Zusammenfassung
Dem Pseudoexfoliations(PEX)-Glaukom, der mit Abstand wichtigsten und häufigsten Form
der Sekundärglaukome, liegt ein generalisierter, genetisch determinierter, elastotischer
Matrixprozess als identifizierbare Glaukomursache zugrunde. Er ist charakterisiert
durch die exzessive Produktion und progressive Ablagerung eines fibrillären extrazellulären
Materials in verschiedenen Geweben einschließlich der Kammerwasserabflusswege. Eine
wachsende Datenlage scheint zu bestätigen, dass die oxidative-antioxidative Balance
bei Patienten mit PEX-Syndrom und PEX-Glaukom, sowohl im vorderen Augenabschnitt als
auch systemisch, gestört ist und dass der daraus resultierende oxidative Stress eine
zentrale Rolle in der Pathogenese des abnormalen Matrixprozesses spielt. Störungen
der antioxidativen Schutzmechanismen umfassen erniedrigte Konzentrationen von Ascorbinsäure,
Glutathion, antioxidativen Spurenelementen und verschiedenen antioxidativen Enzymen,
welche auch eine Dysregulation auf mRNA-Ebene in PEX-Geweben zeigen. Als weitere Hinweise
auf das Vorliegen von oxidativem Stress dienen erhöhte Konzentrationen von Oxidantien,
wie Wasserstoffperoxid und Stickstoffmonoxid, und oxidativer Stressmarker, wie Lipidperoxidationsprodukte,
Abbauprodukte oxidierter und methylierter Proteine, Advanced Glycation End Products
und Homocystein in Kammerwasser, Serum und okulären Geweben. Grundlagenforschungen
konnten weiterhin zeigen, dass chronischer oxidativer Stress, zusammen mit unzureichenden
zellulären Schutz- und Reparaturmechanismen, den aberranten Matrixmetabolismus durch
Induktion einer anhaltenden subklinischen Entzündungsreaktion und Aktivierung des
profibrotischen Wachstumsfaktors TGF-β1 entscheidend beeinflussen kann. Oxidativer
Stress scheint demnach einen modifizierbaren Risikofaktor in der Behandlung von Patienten
mit PEX-Syndrom/Glaukom darzustellen.
Abstract
Pseudoexfoliation (PEX) glaucoma is the most common identifiable cause of open-angle
glaucoma worldwide, comprising the majority of glaucoma in some countries. The underlying
disorder, PEX syndrome, is a generalised, genetically determined, elastotic process
of the extracellular matrix characterised by the excessive production and progressive
accumulation of a fibrillar material in various tissues including the outflow pathways.
Increasing evidence suggests that the oxidative-antioxidative balance is disturbed
in patients with PEX syndrome/glaucoma, both in the anterior segment and throughout
the body, and that the resulting oxidative stress constitutes a major mechanism involved
in the pathophysiology of this fibrotic process. Significantly reduced levels of antioxidants,
such as ascorbic acid, glutathione, trace elements, antioxidative enzymes, and total
antioxidative capacity in aqueous humor and serum suggest a faulty antioxidative defense
system in PEX patients. The down-regulation of antioxidative enzymes in anterior segment
tissues also indicates an inadequate cytoprotection against oxidative stress. Concomitantly,
levels of oxidants such as hydrogen peroxide or nitric oxide, and oxidative stress
markers, including lipid peroxidation products, degradation products of oxidated and
methylated proteins, advanced glycation end products, and homocysteine are significantly
increased in aqueous humor, tissues, and serum. The available data suggest that chronic
oxidative stress in combination with weakened cytoprotective and repair strategies
affects the abnormal matrix metabolism by induction of a persistent pro-inflammatory
state and activation of the profibrotic growth factor TGF-β1. Oxidative stress, therefore,
appears to represent a modifiable risk factor in the management of patients with PEX
syndrome/glaucoma.
Schlüsselwörter
Pseudoexfoliationssyndrom - PEX-Glaukom - oxidativer Stress - extrazelluläre Matrix
- TGF-ß1
Key words
pseudoexfoliation syndrome - pseudoexfoliation glaucoma - oxidative stress - extracellular
matrix - TGF-ß1
Literatur
- 1
Vogt A.
Ein neues Spaltlampenbild des Pupillengebiets: Hellblauer Pupillensaumfilz mit Häutchenbildung
auf der Linsenvorderkapsel.
Klin Monatsbl Augenheilkd.
1925;
75
1-12
- 2
Ritch R, Schlötzer-Schrehardt U.
Exfoliation syndrome.
Surv Ophthalmol.
2001;
45
265-315
- 3
Naumann G OH, Schlötzer-Schrehardt U, Küchle M.
Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and
systemic manifestations.
Ophthalmology.
1998;
105
951-968
- 4
Schlötzer-Schrehardt U, Naumann G OH.
Perspective – Ocular and systemic pseudoexfoliation syndrome.
Am J Ophthalmol.
2006;
141
921-937
- 5
Thorleifsson G, Magnusson K P, Sulem P. et al .
Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma.
Science.
2007;
317
1397-400
- 6
Krumbiegel M, Pasutto F, Mardin C Y. et al .
Exploring functional candidate genes for genetic association in German patients with
pseudoexfoliation syndrome and pseudoexfoliation glaucoma.
Invest Ophthalmol Vis Sci.
2009;
50
2796-2801
- 7
Arnarsson A, Damji K F, Sasaki H. et al .
Pseudoexfoliation in the Reykjavik Eye Study: Five-year incidence and changes in related
ophthalmologic variables.
Am J Ophthalmol.
2009;
148
291-297
- 8
Koliakos G G, Konstas A GP, Schlötzer-Schrehardt U. et al .
Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation
syndrome.
Am J Ophthalmol.
2002;
134
879-883
- 9
Koliakos G G, Konstas A GP, Schlötzer-Schrehardt U. et al .
8-isoprostaglandin F 2A and ascorbic acid concentration in the aqueous humour of patients
with exfoliation syndrome.
Br J Ophthalmol.
2003;
87
353-356
- 10
Berke A.
Vitamine und Auge.
Optometrie.
2001;
4
28-38
- 11
Yilmaz A, Adigüzel U, Tamer L. et al .
Serum oxidant/antioxidant balance in exfoliation syndrome.
Clin Exp Ophthalmol.
2005;
33
63-66
- 12
Zoric L, Miric D, Milenkovic S. et al .
Pseudoexfoliation syndrome and its antioxidative protection deficiency as risk factors
for age-related cataract.
Eur J Ophthalmol.
2006;
16
268-273
- 13
Yagci R, Gürel A, Ersöz I. et al .
Oxidative stress and protein oxidation in pseudoexfoliation syndrome.
Curr Eye Res.
2006;
31
1029-1032
- 14
Koliakos G G, Befani C D, Mikropoulos D. et al .
Prooxidant-antioxidant balance, peroxide and catalase activity in the aqueous humour
and serum of patients with exfoliation syndrome or exfoliative glaucoma.
Graefes Arch Clin Exp Ophthalmol.
2008;
246
1477-1483
- 15
Yagci R, Gürel A, Ersöz I. et al .
The activities of paraoxonase, xanthine oxidase, adenosine deaminase and the level
of nitrite in pseudoexfoliation syndrome.
Ophthalmic Res.
2009;
42
155-159
- 16
Ucakhan Ö, Karel F, Kanpolat A. et al .
Superoxide dismutase activity in the lens capsule of patients with pseudoexfoliation
syndrome and cataract.
J Cataract Refract Surg.
2006;
32
618-622
- 17
Gartaganis S P, Georgakopoulos C D, Patsoukis N E. et al .
Glutathione and lipid peroxide changes in pseudoexfoliation syndrome.
Curr Eye Res.
2005;
30
647-651
- 18
Gartaganis S P, Patsoukis N E, Nikolopoulos D K. et al .
Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome.
Eye.
2007;
21
1406-1411
- 19
Laganovska G, Martinsons A, Pitrans B. et al .
Kynurenine and neopterin in the aqueous humor of the anterior chamber of the eye and
in serum of cataract patients.
Adv Exp Med Biol.
2003;
527
367-374
- 20
Yildirim Z, Ucgun N I, Kilic N. et al .
Pseudoexfoliation syndrome and trace elements.
Ann N Y Acad Sci.
2007;
1100
207-212
- 21
Zenkel M, Pöschl E, der Mark von K. et al .
Differential gene expression in pseudoexfoliation syndrome.
Invest Ophthalmol Vis Sci.
2005;
46
3742-3752
- 22
Zenkel M, Kruse F E, Naumann G OH. et al .
Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma.
Invest Ophthalmol Vis Sci.
2007;
48
5558-5566
- 23
Abu-Amero K K, Morales J, Mohamed G H. et al .
Glutathione S-transferase M 1 and T 1 polymorphisms in Arab glaucoma patients.
Mol Vis.
2008;
14
425-430
- 24
Rönkkö S, Rekonen P, Kaarniranta K. et al .
Phospholipase A 2 in chamber angle of normal eyes and patients with primary open angle
glaucoma and exfoliation glaucoma.
Mol Vis.
2007;
13
408-417
- 25
Kotikoski H, Moilanen E, Vapaatalo H. et al .
Biochemical markers of the L-arginine-nitric oxide pathway in the aqueous humour in
glaucoma patients.
Acta Ophthalmol Scand.
2002;
80
191-195
- 26
Altintas Ö, Maral H, Yüksel N. et al .
Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation
syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma.
Graefes Arch Clin Exp Ophthalmol.
2005;
243
677-683
- 27
Schlötzer-Schrehardt U, Zenkel M, Decking U. et al .
Selective upregulation of the A 3 adenosine receptor in eyes with pseudoexfoliation
syndrome and glaucoma.
Invest Ophthalmol Vis Sci.
2005;
46
2023-2034
- 28
Faschinger C, Schmut O, Wachswender C. et al .
Glaukom und oxidativer Stress.
Ophthalmologe.
2006;
103
953-959
- 29
Yagci R, Ersöz I, Erdurmus M. et al .
Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation
syndrome.
Eye.
2008;
22
128-131
- 30
Dawczynski J, Vater C, Kasper M. et al .
Zur Bedeutung von Advanced Glycation End Products (AGE’s) beim Pseudoexfoliationssyndrom
(PXS) – Korrelation klinischer Ergebnisse mit immunhistologischen Untersuchungen an
humanen Linsenkapseln.
Klin Monatsbl Augenheilkd.
2006;
223
748-751
- 31
Tyagi N, Sedoris K C, Steed M. et al .
Mechanisms of homocysteine-induced oxidative stress.
Am J Physiol Heart Circ Physiol.
2005;
289
H2649-H2656
- 32
Bleich S, Jünemann A, Ahsen von N. et al .
Homocysteine and risk of open-angle glaucoma.
J Neural Transm.
2002;
109
499-1504
- 33
Bleich S, Roedl J, Ahsen von N. et al .
Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma.
Am J Ophthalmol.
2004;
138
162-164
- 34
Roedl J B, Bleich S, Reulbach U. et al .
Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma.
J Glaucoma.
2007;
16
234-239
- 35
Roedl J B, Bleich S, Reulbach U. et al .
Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma.
J Neural Transm.
2007;
114
571-575
- 36
Blomster H, Puustjärvi T, Kontkanen M. et al .
Asymmetric dimethylarginine is not elevated in exfoliation syndrome but symmetric
dimethylarginine is related to exfoliative glaucoma.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
204-209
- 37
Liton P B, Gonzalez P.
Stress response of the trabecular meshwork.
J Glaucoma.
2008;
17
378-385
- 38
Maggio M, Guralnik J M, Longo D L. et al .
Interleukin-6 in aging and chronic disease: a magnificent pathway.
J Gerontol Biol Sci Med Sci.
2006;
61A
575-584
- 39
Zenkel M, Lewczuk P, Jünemann A. et al .
Pro-inflammatory cytokines are involved in initiation of the abnormal matrix process
in pseudoexfoliation syndrome/glaucoma.
Am J Pathol.
2009;
(submitted)
- 40
Gottanka J, Flügel-Koch C, Martus P.
Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation
syndrome.
Invest Ophthalmol Vis Sci.
1997;
38
2435-2446
Prof. Dr. Ursula Schlötzer-Schrehardt
Augenklinik, Universität Erlangen-Nürnberg
Schwabachanlage 6
91054 Erlangen
Telefon: ++ 49/91 31/8 53 44 33
Fax: ++ 49/91 31/8 53 46 31
eMail: ursula.schloetzer@augen.imed.uni-erlangen.de