Subscribe to RSS
DOI: 10.1055/s-0029-1219183
Thieme Chemistry Journal Awardees - Where Are They Now?Diastereoselective Tandem Iodocarbonate Cyclization of 1,5-Enynes
Publication History
Publication Date:
11 January 2010 (online)

Abstract
A diastereoselective, metal-free tandem iodocarbonatecyclization of 1,5-enyne, emulating the reactivity of gold catalysis is described. The normal selectivity of iodonium reagents for alkene is reversed favoring alkyne activation in the presence of aryl alkynes.
Keywords
enynes - iodocyclization - IBr - tandem reactions - diastereoselectivity
- For reviews, see:
- 1a
Tietze LF. Chem. Rev. 1996, 96: 115Reference Ris Wihthout Link - 1b
Trost BM. Angew. Chem., Int. Ed. Engl. 1995, 34: 259Reference Ris Wihthout Link - 1c
Malacria M. Chem. Rev. 1996, 96: 289Reference Ris Wihthout Link - 1d
Burke MD.Schreiber SL. Angew. Chem. Int. Ed. 2004, 43: 46Reference Ris Wihthout Link - Selected examples:
- 2a
Koh JH.Gagné MR. Angew. Chem. Int. Ed. 2004, 116: 3459Reference Ris Wihthout Link - 2b
Ishinashi H.Ishihara K.Yamamoto Y. J. Am. Chem. Soc. 2004, 126: 11122Reference Ris Wihthout Link - 2c For a review, see:
Enders D.Grondal C.Huettl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570Reference Ris Wihthout Link - For recent reviews, see:
- 3a
Jiménez-Núnez E.Echavarren AM. Chem. Rev. 2008, 108: 3326Reference Ris Wihthout Link - 3b
Gorin DJ.Sherry BD.Toste FD. Chem. Rev. 2008, 108: 3351Reference Ris Wihthout Link - 3c
Michelet V.Toullec PY.Genêt J.-P. Angew. Chem. Int. Ed. 2008, 47: 4268Reference Ris Wihthout Link - 3d
Hashmi ASK. Chem. Rev. 2007, 107: 3180Reference Ris Wihthout Link - 3e
Fürstner A.Davies PW. Angew. Chem. Int. Ed. 2007, 46: 3410Reference Ris Wihthout Link - For selected recent examples, see:
- 4a
Barluenga J.Vázquez-Villa H.Merino I.Ballesteros A.González JM. Chem. Eur. J. 2006, 12: 5790Reference Ris Wihthout Link - 4b
Barluenga J.Vázquez-Villa H.Ballesteros A.González JM. J. Am. Chem. Soc. 2003, 125: 9028Reference Ris Wihthout Link - 4c
Crone B.Kirsch SF. J. Org. Chem. 2007, 72: 5435Reference Ris Wihthout Link - 4d
Ding Q.Chen Z.Yu X.Peng Y.Wu J. Tetrahedron Lett. 2009, 50: 340Reference Ris Wihthout Link - 4e
Chen Z.Ding Q.Yu X.Wu J. Adv. Synth. Catal. 2009, 351: 1692Reference Ris Wihthout Link - For iodonium-induced cyclization of two tethered π-bonds:
- 5a
Schreiner PR.Prall M.Lutz V. Angew. Chem. Int. Ed. 2003, 42: 5757Reference Ris Wihthout Link - 5b
Pandey G.Gadre SR. Acc. Chem. Res. 2004, 37: 201Reference Ris Wihthout Link - 5c
Barluenga J.Romanelli GP.Alvarez-García LJ.Llorente I.González JM.García-Rodríguez E.García-Granda S. Angew. Chem. Int. Ed. 1998, 37: 3136Reference Ris Wihthout Link - 5d For a prototypical iodocarbonate cyclization
of olefin, see:
Duan JJ.-W.Smith AB. J. Org. Chem. 1993, 58: 3703Reference Ris Wihthout Link - 6a
Kang J.-E.Lee E.-S.Park S.-I.Shin S. Tetrahedron Lett. 2005, 46: 7431Reference Ris Wihthout Link - 6b
Kang J.-E.Shin S. Synlett 2006, 717Reference Ris Wihthout Link - 6c
Lim C.Kang J.-E.Lee J.-E.Shin S. Org. Lett. 2007, 9: 3539Reference Ris Wihthout Link - 6d
Lee E.-S.Yeom H.-S.Hwang J.-H.Shin S. Eur. J. Org. Chem. 2007, 3503Reference Ris Wihthout Link - 6e
Robles-Machín R.Adrio J.Carretero JC. J. Org. Chem. 2006, 71: 5023Reference Ris Wihthout Link - 6f
Hashmi ASK.Salathé R.Frey W. Synlett 2007, 1763Reference Ris Wihthout Link - 6g
Buzas A.Gagosz F. Synlett 2006, 2727Reference Ris Wihthout Link - 6h
Buzas A.Gagosz F. Org. Lett. 2006, 8: 515Reference Ris Wihthout Link - 6i
Istrate F.Buzas A.Dias Jurberg I.Odabachian Y.Gagosz F. Org. Lett. 2008, 10: 925Reference Ris Wihthout Link - 6j
Buzas A.Istrate F.Le Goff XF.Odabachian Y.Gagosz F. J. Organomet. Chem. 2009, 694: 515Reference Ris Wihthout Link - 6k
Buzas A.Istrate FM.Gagosz F. Tetrahedron 2009, 65: 1889Reference Ris Wihthout Link - 6l
Cheong JY.Bae HJ.Baskar B.Thangadurai D.Kim M.-J.Rhee YH. Bull. Korean Chem. Soc. 2009, 30: 1239Reference Ris Wihthout Link - For selected examples of gold-catalyzed 1,n-enyne cyclizations, see:
- 7a
Nieto-Oberhuber C.Munoz MP.Bunuel E.Nevado C.Cárdenas DJ.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 2402Reference Ris Wihthout Link - 7b
Luzung MR.Markham JP.Toste FD. J. Am. Chem. Soc. 2004, 126: 10858Reference Ris Wihthout Link - 7c
Zhang L.Kozmin SA. J. Am. Chem. Soc. 2005, 127: 6962Reference Ris Wihthout Link - 7d
Buzas AK.Istrate FM.Gagosz F. Angew. Chem. Int. Ed. 2007, 46: 1141Reference Ris Wihthout Link - 7e
Kirsch SF.Binder JT.Duschek A.Haug TT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2007, 46: 2310Reference Ris Wihthout Link - Similar reactivities in 1,6-enynes, see:
- 7f
Baskar B.Bae HJ.An SE.Cheong JY.Rhee YH.Duschek A.Kirsch SF. Org. Lett. 2008, 10: 2605Reference Ris Wihthout Link - 7g
Bae HJ.Baskar B.An SE.Cheong JY.Thangadurai DT.Hwang I.-C.Rhee YH. Angew. Chem. Int. Ed. 2008, 47: 2263Reference Ris Wihthout Link - 7h
Kirsch SF. Synthesis 2008, 3183Reference Ris Wihthout Link - 7i
Bohringer S.Gagosz F. Adv. Synth. Catal. 2008, 350: 2617Reference Ris Wihthout Link - 7j
Huang X.Zhang L. Org. Lett. 2007, 9: 4627Reference Ris Wihthout Link - 7k
Karmakar S.Kim A.Oh CH. Synthesis 2009, 194Reference Ris Wihthout Link - 8a
Kang J.-E.Kim H.-B.Lee J.-W.Shin S. Org. Lett. 2006, 8: 3537Reference Ris Wihthout Link - For an experimental comparison of the rate of halogenation on alkene and alkyne, see:
- 8b
Yates K.Schmid GH.Regulski TW.Garratt DG.Leung H.-W.McDonald R. J. Am. Chem. Soc. 1973, 95: 160Reference Ris Wihthout Link - For a recent review comparing metal-catalyzed and iodonium-triggered reactions, see:
- 8c
Yamamoto Y.Gridnev ID.Patil NT.Jin T. Chem. Commun. 2009, 5075Reference Ris Wihthout Link - 10 For similar studies on olefin carbonation,
see:
Bongini A.Cardillo G.Orena M.Porzi G.Sandri S. J. Org. Chem. 1982, 47: 4626 - For recent reviews on the theoretical aspects of electrophilic metal-alkyne complexes, see:
- 13a
Gorin DJ.Toste FD. Nature (London) 2007, 446: 395Reference Ris Wihthout Link - 13b
Toste FD. Nature Chem. 2009, 1: 482Reference Ris Wihthout Link - 13c
Fürstner A.Morency L. Angew. Chem. Int. Ed. 2008, 47: 5030 ; see also ref. 8c for the related 1,5-enyne cyclization trapping with carboxylic acidReference Ris Wihthout Link - 14a
Okazaki T.Laali KK. J. Org. Chem. 2005, 70: 9139Reference Ris Wihthout Link - 14b
Okazaki T.Laali KK. J. Org. Chem. 2006, 71: 9643Reference Ris Wihthout Link
References and Notes
Key spectral feature of monoalkene carbonation products 3 is as follows: Chemical shift (δ) of CH2I peak is ca. 3.5 ppm (¹H NMR), and 5-15 ppm (¹³C NMR) depending on the diastereomer. Proton and carbon correlation of these resonances is apparent in HSQC spectra of compounds 3.
11The structural and stereochemical identity of the iodocarbonate products 4 were confirmed by the conversion of 4f/4g into 7f/7g (Scheme [²] ), respectively, by the radical deiodination as below. Spectra of 7f/7g matched those of the respective products obtained in Au(I) catalysis.6c For 4o and 4q, relative stereochemistry was based on 1D-NOE spectra.

Scheme 2
The assignment of iodobromination products 5 was based on the following experiments: i) LRMS (CI) fragmentation data containing 79Br/8¹Br isotope, ii) 1D-NOE spectra of 5g, iii) conversion of 5o into 4o′ (diastereomer of 4o) by Ag(I)-promoted carbonation, iv) conversion of 5o into 6o by E2 elimination (NaOMe), and v) the reaction of 2n with ICl into a mixture of 4n and iodochlorinated product 7n (Scheme [³] ), corresponding to 5n.

Scheme 3
For a hydride addition on an alkyne: Strozier R. W., Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 1979, 79, 1340; for addition of a weaker nucleophile (olefin in this case) having a later TS, preferential attack of alkyne should be even more pronounced.
16However, in the formation of 4h, 4k, and 4n/5n, diastereomeric products having trans-1,2-vicinal relationship between the two methyl bearing centers were not observed. This observation indicates some degree of concertedness of C-C and C-O bond formations (or less likely, stereoelectronically driven nucleophilic trapping of the cationic center).
17
Typical Procedure
for the IBr-Promoted Tandem Cyclization
To a solution
of 2f (57.3 mg, 0.200 mmol) in CH2Cl2 (1
mL) at -78 ˚C was added dropwise a solution
of IBr (82.7 mg, 0.400 mmol) in CH2Cl2 (1
mL). The mixture was kept stirred at -78 ˚C for
20 min, then aq sat. Na2S2O3 (4
mL) was added at once. The mixture was allowed to warm to r.t. with stirring.
Layers were separated, and the aqueous layer was extracted with
CH2Cl2 (3 × 4 mL). The combined organic layers
were dried (MgSO4), evaporated, and the residue was purified
by silica gel chromatography (EtOAc-hexane = 1:6)
to yield 57.5 mg (81%) of 4f as
a white solid (mp 154-156 ˚C).
Compound 4f: IR (neat): 2916, 1800, 1436, 1350,
1185, 1057 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.45-7.28
(m, 3 H), 7.28-7.15 (m, 2 H), 4.60 (t, J = 3.0
Hz, 1 H), 3.32 (dd, J = 2.2,
16.9 Hz, 1 H), 2.97 (dd, J = 2.6,
17.0 Hz, 1 H), 2.93 (d, J = 15.8
Hz, 1 H), 2.52 (d, J = 15.8
Hz, 1 H), 1.60 (s, 3 H). ¹³C NMR (100
MHz, CDCl3): d = 154.5, 144.5, 144.0, 129.1,
128.6, 128.2, 88.7, 83.6, 82.0, 44.7, 42.7, 26.7. HRMS: m/z calcd for C14H13INaO3 [M + Na]+:
378.9807; found: 378.9809.
Compound 4g:
white solid; mp 114-115 ˚C. IR (neat): 2921, 1790,
1506, 1246, 1052 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.18 (d, J = 8.8 Hz,
2 H), 6.89 (d, J = 8.5
Hz, 2 H), 4.58 (t, J = 2.9
Hz, 1 H), 3.82 (s, 3 H), 3.31 (dd, J = 2.2,
16.9 Hz, 1 H), 2.96 (dd, J = 2.5,
16.9 Hz, 1 H), 2.92 (d, J = 15.8
Hz, 1 H), 2.51 (d, J = 15.8
Hz, 1 H), 1.60 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 159.8, 154.5, 144.0, 136.3,
129.6, 114.3, 88.1, 83.7, 82.0, 55.9, 44.8, 42.9, 26.7. Anal Calcd
for C15H15IO4: C, 46.65; H, 3.92.
Found: C, 45.60; H, 4.10. LRMS (CI+): m/z calcd for C15H16IO4 [M+ + H]:
387; found: 387 (100) [M+ + H],
343 (6) [M+ + H - CO2],
325 (67) [M+ + H - CO2 - H2O].
Compound 5g: colorless liquid. IR (neat): 2968,
2926, 1738, 1506, 1279, 1246, 1156, 1085 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.10 (d, J = 8.4 Hz,
2 H), 6.89 (d, J = 8.8
Hz, 2 H), 5.00 (t, J = 4.7
Hz, 1 H), 3.82 (s, 3 H), 3.44 (d br, J = 18.7
Hz, 1 H), 3.07 (d of ABq, J = 7.9
Hz, 1 H), 3.00 (d of ABq, J = 7.9
Hz, 1 H), 2.94 (d br, J = 18.7
Hz, 1 H), 1.81 (s, 3 H), 1.52 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 159.6, 153.3,
141.2, 137.9, 129.7, 114.3, 93.1, 83.6, 61.4, 55.9, 47.7, 45.7,
28.8, 28.4. LRMS (CI+): m/z calcd
for C19H25
79BrIO4 [M+ + H]:
523; found: 523 (24) [M+ + H, 79Br],
525 (24) [M+ + H, 8¹Br],
467 (10) [M+ + H - C4H8, 79Br],
469 (8) [M+ + H - C4H8, 8¹Br],
443 (6) [M+ - 79Br],
405 (37) [M+ + H - C4H8 - CO2 - H2O, 79Br],
407 (36) [M+ + H - C4H8 - CO2 - H2O, 8¹Br].
Compound 4n: white solid; mp 105-107 ˚C.
IR (NaCl): 2916, 2850, 1790, 1601, 1511, 1350, 1246, 1057 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 7.12 (d, J = 8.8 Hz,
2 H), 6.90 (d, J = 8.4
Hz, 2 H), 4.55 (t, J = 3.7
Hz, 1 H), 3.82 (s, 3 H), 3.24-3.16 (m, 2 H), 2.95 (q, J = 7.3 Hz,
1 H), 1.58 (s, 3 H), 1.07 (d, J = 7.3
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 159.8,
154.6, 149.6, 136.7, 130.0, 129.8, 114.4, 89.0, 86.0, 81.9, 55.9,
46.3, 43.8, 25.0, 13.4. ES-HRMS: m/z calcd
for C16H17IO4Na [M + Na]+:
423.0069; found: 423.0068.
Compound 5n:
pale yellow liquid. IR (NaCl): 2916, 2930, 1743, 1601, 1506, 1365,
1279, 1242, 1156 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.16 (d, J = 8.4 Hz,
2 H), 6.91 (d, J = 8.8
Hz, 2 H), 5.49 (dd, J = 3.3,
7.7 Hz, 1 H), 4.03 (q, J = 6.9
Hz, 1 H), 3.82 (s, 3 H), 3.37 (dd, J = 7.7,
17.3 Hz, 1 H), 2.77 (dd, J = 3.3,
17.2 Hz, 1 H), 1.70 (d, J = 7.0
Hz, 3 H), 1.51 (s, 9 H), 1.14 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3):
δ = 159.9,
153.6, 152.8, 131.2, 129.5, 114.3, 95.2, 83.1, 78.3, 60.4, 57.4,
55.8, 50.7, 28.4, 21.8, 18.7. LRMS (CI+): m/z calcd for C20H26
79BrIO4 [M+ + H]:
537; found: 537 (22) [M+ + H, 79Br],
539 (22) [M+ + H, 8¹Br],
481 (26) [M+ + H - C4H8, 79Br],
483 (24) [M+ + H - C4H8, 8¹Br],
419 (52) [M+ - BocO, 79Br],
421 (51) [M+ - BocO, 8¹Br],
401 (100) [M+ - Br - C4H8, 79Br].