Subscribe to RSS
DOI: 10.1055/s-0030-1259698
Asymmetric Mukaiyama Aldol Reaction Catalyzed by C 2-Symmetric N,N′-Dioxide-Ni(II) Complex
Publication History
Publication Date:
08 March 2011 (online)

Abstract
The N,N′-dioxide-Ni(II) complex has been developed for the asymmetric Mukaiyama aldol reaction between glyoxal derivatives and enolsilane which produced the 2-hydroxy-1,4-dicarbonyl compounds in moderate to high yields (up to 95%) with excellent enantioselectivities (up to 95% ee). Based on the configuration of the product and X-ray structure of the catalyst, a possible transition state was proposed to explain the mechanism of the reaction.
Key words
asymmetric catalysis - N,N′-dioxides complex - nickel - Mukaiyama aldol reaction - glyoxal derivatives
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- For reviews, see:
- 1a
Gröger H.Vogl EM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137Reference Ris Wihthout Link - 1b
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357Reference Ris Wihthout Link - 1c
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432Reference Ris Wihthout Link - 1d
Palomo C.Oiarbide M.García JM. Chem. Eur. J. 2002, 8: 36Reference Ris Wihthout Link - 1e
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506Reference Ris Wihthout Link - 1f
Adachi S.Harada T. Eur. J. Org. Chem. 2009, 3661Reference Ris Wihthout Link - 1g
Geary LM.Hultin PG. Tetrahedron: Asymmetry 2009, 20: 131Reference Ris Wihthout Link - 2
Kobayashi S.Fujishita Y.Mukaiyama T. Chem. Lett. 1990, 1455 - For selected examples, see:
- 3a
Furuta K.Maruyama T.Yamamoto H. J. Am. Chem. Soc. 1991, 113: 1041Reference Ris Wihthout Link - 3b
Carreira EM.Singer RA.Lee W. J. Am. Chem. Soc. 1994, 116: 8837Reference Ris Wihthout Link - 3c
Mikami K.Matsukawa S. J. Am. Chem. Soc. 1994, 116: 4077Reference Ris Wihthout Link - 3d
Keck GE.Krishnamurthy D. J. Am. Chem. Soc. 1995, 117: 2363Reference Ris Wihthout Link - 3e
Krüger J.Carreira EM. J. Am. Chem. Soc. 1998, 120: 837Reference Ris Wihthout Link - 3f
Evans DA.Kozlowski MC.Murry JA.Burgey CS.Campos KR.Connell BT.Staples RJ. J. Am. Chem. Soc. 1999, 121: 669Reference Ris Wihthout Link - 3g
Yamashita Y.Ishitani H.Shimizu H.Kobayashi S. J. Am. Chem. Soc. 2002, 124: 3292Reference Ris Wihthout Link - 3h
Le JC.-D.Pagenkopf BL. Org. Lett. 2004, 6: 4097Reference Ris Wihthout Link - 3i
Oisaki K.Zhao D.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 7164Reference Ris Wihthout Link - 3j
Fu F.Teo YC.Loh TP. Tetrahedron Lett. 2006, 47: 4267Reference Ris Wihthout Link - 3k
Kiyooka S.Matsumoto S.Shibata T.Shinozaki K. Tetrahedron 2010, 66: 1806 ; and references thereinReference Ris Wihthout Link - For selected examples, see:
- 4a
Denmark SE.Fan Y.
J. Am. Chem. Soc. 2002, 124: 4233Reference Ris Wihthout Link - 4b
Denmark SE.Wynn T.Beutner GL. J. Am. Chem. Soc. 2002, 124: 13405Reference Ris Wihthout Link - 4c
Zhuang W.Poulsen TB.Jørgensen KA. Org. Biomol. Chem. 2005, 3: 3284Reference Ris Wihthout Link - 4d
McGilvra JD.Unni AK.Modi K.Rawal VH. Angew. Chem. Int. Ed. 2006, 45: 6130Reference Ris Wihthout Link - 4e
Adachi S.Harada T. Org. Lett. 2008, 10: 4999Reference Ris Wihthout Link - 4f
Gondi VB.Hagihara K.Rawal VH. Angew. Chem. Int. Ed. 2009, 48: 776Reference Ris Wihthout Link - 4g
García-García P.Lay F.García-García P.Rabalakos C.List B. Angew. Chem. Int. Ed. 2009, 48: 4363Reference Ris Wihthout Link - 4h
Cheon CH.Yamamoto H. Org. Lett. 2010, 12: 2476 ; and references thereinReference Ris Wihthout Link - 5a
Evans DA.MacMillan DWC.Campos KR.
J. Am. Chem. Soc. 1997, 119: 10859Reference Ris Wihthout Link - 5b
Evans DA.Burgey CS.Kozlowski MC.Tregay SW. J. Am. Chem. Soc. 1999, 121: 686Reference Ris Wihthout Link - 5c
Evans DA.Masse CE.Wu J. Org. Lett. 2002, 4: 3375Reference Ris Wihthout Link - 5d
Langner M.Bolm C. Angew. Chem. Int. Ed. 2004, 43: 5984Reference Ris Wihthout Link - 5e
Akullian LC.Snapper ML.Hoveyda AH. J. Am. Chem. Soc. 2006, 128: 6532Reference Ris Wihthout Link - 5f
Engers JL.Pagenkopf BL. Eur. J. Org. Chem. 2009, 6109Reference Ris Wihthout Link - 5g
Gondi VB.Hagihara K.Rawal VH. Chem. Commun. 2010, 46: 904Reference Ris Wihthout Link - For reviews on N-dioxides in the asymmetric catalysis, see:
- 6a
Chelucci G.Murineddu G.Pinna GA. Tetrahedron: Asymmetry 2004, 15: 1373Reference Ris Wihthout Link - 6b
Malkov AV.Kočovský P. Eur. J. Org. Chem. 2007, 29Reference Ris Wihthout Link - For examples of our recent work, see:
- 7a
Zheng K.Shi J.Liu XH.Feng XM. J. Am. Chem. Soc. 2008, 130: 15770Reference Ris Wihthout Link - 7b
Zheng K.Liu XH.Zhao JN.Yang Y.Lin LL.Feng XM. Chem. Commun. 2010, 46: 3771Reference Ris Wihthout Link - 7c
Xie MS.Chen XH.Zhu Y.Gao B.Lin LL.Liu XH.Feng XM. Angew. Chem. Int. Ed. 2010, 49: 3799Reference Ris Wihthout Link - 7d
Hui YH.Jiang J.Wang WT.Chen WL.Cai YF.Lin LL.Liu XH.Feng XM. Angew. Chem. Int. Ed. 2010, 49: 4290Reference Ris Wihthout Link - 7e
Li W.Wang J.Hu XL.Shen K.Wang WT.Chu YY.Lin LL.Liu XH.Feng XM. J. Am. Chem. Soc. 2010, 132: 8532Reference Ris Wihthout Link - 8
Terada M.Soga K.Momiyama N. Angew. Chem. Int. Ed. 2008, 47: 4122
References and Notes
General Procedure
for the Asymmetric Mukaiyama Aldol Reaction between Glyoxal Derivative
1a and Enolsilane 3a:
Ligand L7 (0.01
mmol) and Ni(BF4)2˙6H2O
(0.01 mmol) were dissolved in CH2Cl2 (0.5
mL) and stirred at 30 ˚C for 1 h. Then the solvent
was removed and glyoxal derivative 1a (0.1
mmol) was added. After adding CH2Cl2 (1.0
mL) and enolsilane 3a (0.15 mmol), the
mixture was stirred at 30 ˚C for 24 h under N2 atmosphere.
Then, THF (2.0 mL) and 1 N HCl (1.0 mL) were added to the reaction
mixture. After stirring at r.t. for 30 min, this solution was poured
into a separatory funnel and diluted with Et2O (5.0 mL)
and H2O (1.0 mL). After mixing, the aqueous layer was
discarded and the ether layer was washed with sat. aq NaHCO3 (5.0
mL) and brine (5.0 mL). The resulting ether layer was dried over anhyd
MgSO4, and concentrated in vacuo. The crude product was
chromatographed on silica gel to give the desired adduct 5a: 94% yield; 92% ee {determined
by HPLC analysis with a Chiral OJ-H column, hexane-2-PrOH (80:20),
1.0 mL/min, UV = 254 nm; t
R1 = 18.6
min, t
R2 = 20.5
min); [α]D
²5 +11.9
(c 0.454, in CH2Cl2}; ¹H
NMR (400 MHz, CDCl3): δ = 3.37-3.49
(m, 2 H), 4.04 (d, J = 6.0 Hz,
1 H), 5.68-5.73 (m, 1 H), 7.46-7.55 (m, 4 H),
7.58-7.66 (m, 2 H), 7.95-8.01 (m, 4 H) ppm.