Subscribe to RSS
DOI: 10.1055/s-0031-1290530
Asymmetric Alkyne Addition to Aldehydes Catalyzed by BINOL and Its Derivatives
Publication History
Publication Date:
24 February 2012 (online)

Abstract
This Account describes our research over the past decade in the asymmetric alkyne addition to aldehydes to generate optically active propargylic alcohols. Our methods employ a dialkylzinc reagent to react with a terminal alkyne to form an alkynylzinc nucleophile, and can be grouped into the BINOL-catalyzed reactions and the functionalized BINOL catalyzed reactions. We first describe the development of the BINOL-ZnEt2-Ti(Oi-Pr)4 catalyst system, and its modification through the use of Lewis base additives to form the alkynylzinc at room temperature. The substrate scope compatible with these methods and the enantioselectivities achieved are discussed. We then describe the functionalized BINOL and H8BINOL catalyst systems, which can be further divided into classes based on the manner in which the BINOL framework has been modified. Generally, these functionalized BINOL and H8BINOL derivatives contain internal Lewis basic sites which can both promote the formation of the nucleophilic alkynylzinc reagents at reduced temperature and modify the catalytic properties of the chiral biaryl unit. In a few cases, these catalysts also show good efficiency even without the use of the Ti(IV) reagent. The catalytic methods in this Account have demonstrated that a wide range of alkyne and aldehyde substrates can be subjected to the asymmetric addition reactions to generate structurally diverse chiral propargylic alcohols with high enantioselectivity. Some of these methods have exhibited high practicality in synthesis.
1 Introduction
2 BINOL-Based Catalytic Systems
2.1 Catalysis by BINOL-ZnEt2-Ti(Oi-Pr)4
2.2 Catalysis by BINOL-ZnEt2-Ti(Oi-Pr)4-HMPA
2.3 Catalysis by BINOL-ZnEt2-Ti(Oi-Pr)4-NMI
2.4 Catalysis by BINOL-ZnEt2-Ti(Oi-Pr)4-Cy2NH
3 Functionalized BINOL-Based Catalytic Systems
3.1 Catalysis by 3,3′-Dianisyl-BINOLs and -H8BINOLs
3.2 Catalysis by 3,3′-Bis(diphenylmethoxy)methyl Substituted BINOLs
3.3 Catalysis by Acyclic and Macrocyclic Binaphthyl Salens
3.4 Catalysis by 3,3′-Bismorpholinomethyl H8BINOL
3.5 Catalysis by C 1-Symmetric BINOL-Terpyridine
4 Summary
Key words
alkyne addition to aldehydes - BINOL-based catalytic systems -
- 1a
Frantz DE.Fässler R.Tomooka CS.Carreira EM. Acc. Chem. Res. 2000, 33: 373Reference Ris Wihthout Link - 1b
Pu L. Tetrahedron 2003, 59: 9873Reference Ris Wihthout Link - 1c
Cozzi PG.Hilgraf R.Zimmermann N. Eur. J. Org. Chem. 2004, 4095Reference Ris Wihthout Link - 1d
Lu G.Li Y.-M.Li X.-S.Chan ASC. Coord. Chem. Rev. 2005, 249: 1736Reference Ris Wihthout Link - 1e
Trost BM.Weiss AH. Adv. Synth. Catal. 2009, 351: 963Reference Ris Wihthout Link - 1f
Gao G.Pu L. Sci. China, Ser. B, Chem. Life Sci. Earth Sci. 2010, 53: 21Reference Ris Wihthout Link - Selected examples of transformations of propargylic alcohols:
- 2a
Trost BM.Müller TJJ. J. Am. Chem. Soc. 1994, 116: 4985Reference Ris Wihthout Link - 2b
Trost BM.Müller TJJ.Martinez J. J. Am. Chem. Soc. 1995, 117: 1888Reference Ris Wihthout Link - 2c
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Pace P. Eur. J. Org. Chem. 1999, 3305Reference Ris Wihthout Link - 2d
Marshall JA.Chobanian HR.Yanik MM. Org. Lett. 2001, 3: 3369Reference Ris Wihthout Link - 2e
Trost BM.Ball ZT.Jöge T. Angew. Chem. Int. Ed. 2003, 42: 3415Reference Ris Wihthout Link - 2f
Alfonsi M.Arcadi A.Chiarini M.Marinelli F. J. Org. Chem. 2007, 72: 9510Reference Ris Wihthout Link - 2g
Zhou LH.Yu XQ.Pu L. J. Org. Chem. 2009, 74: 2013Reference Ris Wihthout Link - 2h See references 8, 12, 17,
and 25. Selected examples of propargylic alcohols in total synthesis:
Crimmins MT.Jung DK.Gray JL. J. Am. Chem. Soc. 1993, 115: 3146Reference Ris Wihthout Link - 2i
Roethle PA.Trauner D. Org. Lett. 2006, 8: 345Reference Ris Wihthout Link - 2j
Trost BM.Weiss AH. Angew. Chem. Int. Ed. 2007, 46: 7664Reference Ris Wihthout Link - 2k
Imagawa H.Saijo H.Kurisaki T.Yamamoto MK.Fukuyama Y.Nishizawa M. Org. Lett. 2009, 11: 1253Reference Ris Wihthout Link - Selected reviews on BINOL and BINOL derivatives:
- 3a
Rosini C.Franzini L.Raffaelli A.Salvadori P. Synthesis 1992, 503Reference Ris Wihthout Link - 3b
Pu L. Chem. Rev. 1998, 98: 2405Reference Ris Wihthout Link - 3c
Chen Y.Yekta S.Yudin AK. Chem. Rev. 2003, 103: 3155Reference Ris Wihthout Link - 3d
Kočovský P.Vyskočil Š.Smrčina M. Chem. Rev. 2003, 103: 3213Reference Ris Wihthout Link - 3e
Telfer SG.Kuroda R. Coord. Chem. Rev. 2003, 242: 33Reference Ris Wihthout Link - 3f
Brunel JM. Chem. Rev. 2005, 105: 857Reference Ris Wihthout Link - 3g
Shibasaki M.Matsunaga S. Chem. Soc. Rev. 2006, 35: 269Reference Ris Wihthout Link - 3h
Terada M. Chem. Commun. 2008, 4097Reference Ris Wihthout Link - 3i
Schenker S.Zamfir A.Freund M.Tsogoeva SB. Eur. J. Org. Chem. 2011, 2209Reference Ris Wihthout Link - 4
Pu L. 1,1′-Binaphthyl Based Chiral Materials: Our Journey Imperial College Press; London / UK: 2009.Reference Ris Wihthout Link - A few selected reports by other researchers on the catalytic asymmetric alkyne addition to aldehydes:
- 5a
Frantz DE.Fässler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806Reference Ris Wihthout Link - 5b
Anand NK.Carreira EM. J. Am. Chem. Soc. 2001, 123: 9687Reference Ris Wihthout Link - 5c
Li X.-S.Lu G.Kwok WH.Chan ASC. J. Am. Chem. Soc. 2002, 124: 12636Reference Ris Wihthout Link - 5d
Xu ZQ.Wang R.Xu JK.Da C S.Yan WJ.Chen C. Angew. Chem. Int. Ed. 2003, 42: 5747Reference Ris Wihthout Link - 5e
Takita R.Yakura K.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13760Reference Ris Wihthout Link - 5f
Wolf C.Liu S. J. Am. Chem. Soc. 2006, 128: 10996Reference Ris Wihthout Link - 5g
Trost BM.Weiss AH.von Wangelin AJ. J. Am. Chem. Soc. 2006, 128: 8Reference Ris Wihthout Link - 6a
Moore D.Pu L. Org. Lett. 2002, 4: 1855Reference Ris Wihthout Link - 6b Using BINOL in combination
with ZnMe2 and Ti(Oi-Pr)4 for
the asymmetric phenylacetylene addition to aromatic aldehydes was
reported at about the same time:
Lu G.Li XS.Chan ASC. Chem. Commun. 2002, 172Reference Ris Wihthout Link - 7a
Gao G.Moore D.Xie R.-G.Pu L. Org. Lett. 2002, 4: 4143Reference Ris Wihthout Link - 7b
Du X.Wang Q.He X.Peng R.-G.Zhang X.Yu X.-Q. Tetrahedron: Asymmetry 2011, 22: 1142Reference Ris Wihthout Link - 8
Turlington M.Yue Y.Yu X.-Q.Pu L. J. Org. Chem. 2010, 75: 6941Reference Ris Wihthout Link - 9
Okhlobystin OY.Zakharkin LI. J. Organomet. Chem. 1965, 3: 247Reference Ris Wihthout Link - 10
Gao G.Xie R.-G.Pu L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5417Reference Ris Wihthout Link - 11
Gao G.Wang Q.Yu X.-Q.Xie R.-G.Pu L. Angew. Chem. Int. Ed. 2006, 45: 122Reference Ris Wihthout Link - 12
Rajaram AR.Pu L. Org. Lett. 2006, 8: 2019Reference Ris Wihthout Link - 13
Yang F.Xi P.Yang L.Lan J.Xie R.You J. J. Org. Chem. 2007, 72: 5457Reference Ris Wihthout Link - 14
Turlington M. Catalytic Asymmetric Alkyne Addition to Aldehydes and Applications of Propargylic Alcohols in Synthesis, Ph.D. Thesis University of Virginia; Charlottesville: 2011.Reference Ris Wihthout Link - 16
Du YH.Turlington M.Zhou X.Pu L. Tetrahedron Lett. 2010, 51: 5024Reference Ris Wihthout Link - 17
Turlington M.Du Y.-H.Ostrum SG.Santosh V.Wren K.Lin T.Sabat M.Pu L. J. Am. Chem. Soc. 2011, 133: 11780Reference Ris Wihthout Link - Previous reports on the asymmetric 1,3-dialkyne addition to aldehydes:
- 18a
Reber S.Knöpfel TF.Carreira EM. Tetrahedron 2003, 59: 6813Reference Ris Wihthout Link - 18b
Trost BM.Chan VS.Yamamoto D. J. Am. Chem. Soc. 2010, 132: 5186Reference Ris Wihthout Link - 19
Huang W.-S.Hu Q.-S.Pu L. J. Org. Chem. 1998, 63: 1364Reference Ris Wihthout Link - 20
Huang W.-S.Pu L. Tetrahedron Lett. 2000, 41: 145Reference Ris Wihthout Link - 21
Moore D.Huang W.-S.Xu M.-H.Pu L. Tetrahedron Lett. 2002, 43: 8831Reference Ris Wihthout Link - 22
Xu M.-H.Pu L. Org. Lett. 2002, 4: 4555Reference Ris Wihthout Link - 23
Au-Yeung TT.-L.Chan S.-S.Chan ASC. Adv. Synth. Catal. 2003, 345: 537Reference Ris Wihthout Link - 24
Turlington M.DeBerardinis AM.Pu L. Org. Lett. 2009, 11: 2441Reference Ris Wihthout Link - 25
Yang Y.Turlington M.Yu X.-Q.Pu L. J. Org. Chem. 2009, 74: 8681Reference Ris Wihthout Link - 26
Wang Q.Chen X.Tao L.Wang L.Xiao D.Yu X.-Q.Pu L. J. Org. Chem. 2007, 72: 97Reference Ris Wihthout Link - 27
Wang Q.Chen S.-Y.Yu X.-Q.Pu L. Tetrahedron 2007, 63: 4422Reference Ris Wihthout Link - 28a
Sasaki H.Irie R.Katsuki T. Synlett 1993, 300Reference Ris Wihthout Link - 28b
DiMauro EF.Kozlowski MC. Org. Lett. 2001, 3: 1641Reference Ris Wihthout Link - 28c
Annamalai V.DiMauro EF.Carroll PJ.Kozlowski MC. J. Org. Chem. 2003, 68: 1973Reference Ris Wihthout Link - 28d
DiMauro EF.Kozlowski MC. Organometallics 2002, 21: 1454Reference Ris Wihthout Link - 29
Li Z.-B.Pu L. Org. Lett. 2004, 6: 1065Reference Ris Wihthout Link - 30
Li Z.-B.Liu T.-D.Pu L. J. Org. Chem. 2007, 72: 4340Reference Ris Wihthout Link - 31a
Liu L.Pu L. Tetrahedron 2004, 60: 7427Reference Ris Wihthout Link - 31b
Qin Y.-C.Liu L.Sabat M.Pu L. Tetrahedron 2006, 62: 9335Reference Ris Wihthout Link - 32
Chen X.Chen W.Wang L.Yu X.-Q.Huang D.-S.Pu L. Tetrahedron 2010, 66: 1990Reference Ris Wihthout Link
References
When the first step was allowed to proceed for 2 h for the reaction shown in Scheme [9] b, the propargylic alcohol was formed in only 25% yield and 84% ee.