Synlett 2012; 23(11): 1559-1563
DOI: 10.1055/s-0031-1291156
synpacts
© Georg Thieme Verlag Stuttgart · New York

Cleaving Carbon–Carbon Bonds by the Release of Trifluoroacetate to Remodel Molecules and Assemble Fluorinated Structures

Changho Han
a  Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
,
Eun Hoo Kim
a  Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
,
David A. Colby*
a  Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
b  Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA, Fax: +1(765)4941414   Email: dcolby@purdue.edu
› Author Affiliations
Further Information

Publication History

Received: 12 March 2012

Accepted after revision: 26 April 2012

Publication Date:
11 June 2012 (online)

Abstract

Cleaving carbon–carbon bonds is a significant synthetic challenge. The release of trifluoroacetate presents a powerful force to break these strong bonds. Herein, a brief review of the role of the release of trifluoroacetate in remodeling organic molecules and synthesizing fluorinated compounds is presented.

 
  • References

  • 1 Payette JN, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
  • 2 Draghici C, Brewer M. J. Am. Chem. Soc. 2008; 130: 3766
  • 3 Han C, Kim EH, Colby DA. J. Am. Chem. Soc. 2011; 133: 5802
  • 4 Li H, Li Y, Zhang X.-S, Chen K, Wang X, Shi Z.-J. J. Am. Chem. Soc. 2011; 133: 15244
  • 5 Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2010; 132: 10070
  • 6 Dreis AM, Douglas CJ. J. Am. Chem. Soc. 2009; 131: 412
  • 7 Balthaser BR, Maloney MC, Beeler AB, Porco JA. Jr, Snyder JK. Nat. Chem. 2011; 3: 969
  • 8 Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 9 Mangeney P, Andriamialisoa RZ, Lallemand J.-Y, Langlois N, Langlois Y, Potier P. Tetrahedron 1979; 35: 2175
  • 10 Cave A, Kan-Fan C, Potier P, Le Men J. Tetrahedron 1967; 23: 4681
  • 11 Scott AI, Yeh C.-L, Greenslade D. J. Chem. Soc., Chem. Commun. 1978; 947
  • 12 Tarselli MA, Raehal KM, Brasher AK, Streicher JM, Groer CE, Cameron MD, Bohn LM, Micalizio GC. Nat. Chem. 2011; 3: 449
  • 13 Coates RM, Ho JZ, Klobus M, Zhu L. J. Org. Chem. 1998; 63: 9166
  • 14 Prager JH, Ogden PH. J. Org. Chem. 1968; 33: 2100
  • 15 Nagib DA, MacMillan DW. C. Nature (London) 2011; 480: 224
  • 16 Furuya T, Kamlet AS, Ritter T. Nature (London) 2011; 473: 470
  • 17 Fäh C, Mathys R, Hardegger LA, Meyer S, Bur D, Diederich F. Eur. J. Org. Chem. 2010; 4617
  • 18 John JP, Colby DA. J. Org. Chem. 2011; 76: 9163
  • 19 Qiu Z.-M, Burton DJ. J. Org. Chem. 1995; 60: 5570
  • 20 Riofski MV, John JP, Zheng MM, Kirshner J, Colby DA. J. Org. Chem. 2011; 76: 3676
  • 21 Von Sydow LM, Grimvall AB, Boren HB, Laniewski K, Nielsen AT. Environ. Sci. Technol. 2000; 34: 3115
  • 22 Cahill TM, Seiber JN. Environ. Sci. Technol. 2000; 34: 2909
  • 23 Richey DG, Driscoll CT, Likens GE. Environ. Sci. Technol. 1997; 31: 1723
  • 24 Frank H, Christoph EH, Holm-Hansen O, Bullister JL. Environ. Sci. Technol. 2002; 36: 12
  • 25 Emptage M, Tabinowski J, Odom JM. Environ. Sci. Technol. 1997; 31: 732
  • 26 Boutonnet JC, Bingham P, Calamari D, de Rooij CG, Franklin J, Kawano T, Libre J.-M, McCulloch A, Malinverno G, Odom JM, Rusch GM, Smythe K, Sobolev I, Thompson R, Tiedje JM. Hum. Ecol. Risk Assess. 1999; 5: 59
  • 27 Berends AG, Boutonnet JC, de Rooij CG, Thompson RS. Environ. Toxicol. Chem. 1999; 18: 1053