Synlett 2012; 23(16): 2293-2297
DOI: 10.1055/s-0032-1317096
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Nitrone Chemistry: Some Novel Transformations

Jiong Yang*
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA, Fax: +1(979)8454719   Email: yang@mail.chem.tamu.edu
› Author Affiliations
Further Information

Publication History

Received: 06 July 2012

Accepted after revision: 23 July 2012

Publication Date:
11 September 2012 (online)


Abstract

Despite the long history of nitrone chemistry, novel transformations of nitrones continue to be discovered. This article describes some recent breakthroughs in the development of new transformations of nitrones. These new reactions include formal [3+3] cycloaddition of nitrones and vinylcarbenes to give 3,6-dihydro-1,2-oxazines, tandem cyclization–[3+3] cycloaddition of ­nitrones and enynones to give furo[3,4-d][1,2]oxazines, [2+2+3] cycloaddition of nitrones and 1,6-enynes to give tricyclic 1,2-ox­azepanes, reaction of nitrones and 2-azido acrylates to form 1,2,4,5-tetra­substituted imidazoles, and reactions of α,β-unsaturated N-aryl ketonitrones and activated alkynes to generate C3-quaternary indolenines.

 
  • References


    • For some early reviews:
    • 1a Huisgen R. Angew. Chem. Int. Ed. Engl. 1963; 2: 565
    • 1b Smith LI. Chem. Rev. 1938; 38: 193
    • 1c Hamer J, Macaluso A. Chem. Rev. 1964; 64: 473
  • 2 For an excellent review of nucelophilic additions to chiral nitrones, see : Merino P, Franco S, Merchan FL, Tejero T. Synlett 2000; 442
    • 4a Masson G, Cividino P, Py S, Vallée Y. Angew. Chem. Int. Ed. 2003; 42: 2265
    • 4b Riber D, Skrydstrup T. Org. Lett. 2003; 5: 229
    • 4c Cividino P, Py S, Delair P, Greene AE. J. Org. Chem. 2007; 72: 485

      For the initial report, see:
    • 5a Kinugasa M, Hashimoto S. J. Chem. Soc., Chem. Commun. 1972; 466

    • For examples of catalytic asymmetric versions, see:
    • 5b Miura M, Enna M, Okuro K, Nomura M. J. Org. Chem. 1995; 60: 4999
    • 5c Lo MM.-C, Fu GC. J. Am. Chem. Soc. 2002; 124: 4572
    • 5d Shintani R, Fu GC. Angew. Chem. Int. Ed. 2003; 42: 4082
    • 5e Ye M.-C, Zhou J, Huang Z.-Z, Tang Y. Chem. Commun. 2003; 2554
    • 5f Ye M.-C, Zhou J, Tang Y. J. Org. Chem. 2006; 71: 3576
    • 5g Basak A, Ghosh SC. Synlett 2004; 1637
    • 5h Coyne AG, Mueller-Bunz H, Guiry PJ. Tetrahedron: Asymmetry 2007; 18: 199
    • 5i Evans DA, Kleinbeck F, Ruping M In Asymmetric Synthesis: The Essentials . Christmann M, Bräse S. Wiley-VCH; Weinheim: 2007: 72
    • 5j Saito T, Kikuchi T, Tanabe H, Yahiro J, Otani T. Tetrahedron Lett. 2009; 50: 4969
    • 5k Chen J.-H, Liao S.-H, Sun X.-L, Shen Q, Tang Y. Tetrahedron Lett. 2012; 68: 5042

      The formal [3+3] cycloaddition of nitrones and 1,1-cyclopropane diesters was also designated as homo [3+2] dipolar cycloaddition:
    • 6a Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023
    • 6b Young IS, Kerr MA. Org. Lett. 2004; 6: 139
    • 6c Ganton MD, Kerr MA. J. Org. Chem. 2004; 69: 8554
    • 6d Young IS, Williams JL, Kerr MA. Org. Lett. 2005; 7: 953
    • 6e Carson CA, Kerr MA. Angew. Chem. Int. Ed. 2006; 45: 6560
    • 6f Sibi MK, Mz Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764
    • 6g Kang Y.-B, Sun X.-L, Tang Y. Angew. Chem. Int. Ed. 2007; 46: 3918

    • For related Pd-catalyzed formal [3+3] and [4+3] cycloaddition of N,α-diarylnitrones, see:
    • 6h Shintani R, Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
    • 6i Shintani R, Park S, Duan W.-L, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 5901
    • 6j Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
  • 7 Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528
  • 8 Wang X, Xu X, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2011; 133: 16402
  • 9 Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5900
  • 10 Xu X, Ratnikov MO, Zavalij PY, Doyle MP. Org. Lett. 2011; 13: 6122
  • 11 Wang X, Abrahams QM, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5907
    • 12a Liu F, Yu Y, Zhang J. Angew. Chem. Int. Ed. 2009; 48: 5505
    • 12b Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6669

      For some related transformations, see:
    • 13a Zhang Y, Liu F, Zhang J. Chem. Eur. J. 2010; 6: 6146
    • 13b Wang T, Zhang J. Chem. Eur. J. 2011; 17: 86
    • 13c Bai Y, Fang J, Ren J, Wang Z. Chem. Eur. J. 2009; 15: 8975
  • 14 Gawade SA, Bhunia S, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 7835
  • 15 Hu B, Wang Z, Ai N, Zheng J, Liu X.-H, Shan S, Wang Z. Org. Lett. 2011; 13: 6362
    • 16a Pfeiffer JY, Beauchemin AM. J. Org. Chem. 2009; 74: 8381
    • 16b Franco S, Merchan FL, Merino P, Tejero T. Synth. Commun. 1995; 25: 2272
    • 17a Bartoli G, Marcantoni E, Petrini M. J. Org. Chem. 1990; 55: 4456
    • 17b Bartoli G, Petrini M, Marcantoni E, Bosco M, Dalpozzo R. Tetrahedron Lett. 1990; 31: 6089
    • 17c Bartoli G, Marcantoni E, Petrini M. J. Chem. Soc., Chem. Commun. 1991; 793
  • 18 Hood, T. S.; Huehls, C. B.; Yang, J. unpublished results.
  • 19 Tian G.-Q, Yang J, Rosa-Perez K. Org. Lett. 2010; 12: 5072
  • 20 Hood TS, Huehls CB, Yang J. Tetrahedron Lett. 2012; 53: 4679

    • For some examples of indolenines in syntheses of indole-containing natural products, see:
    • 21a Robinson R, Suginome H. J. Chem. Soc. 1932; 298
    • 21b Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K. J. Am. Chem. Soc. 1954; 76: 4749
    • 21c Stork G, Dolfini JE. J. Am. Chem. Soc. 1963; 85: 2872
    • 21d He F, Bo Y, Altom JD, Corey EJ. J. Am. Chem. Soc. 1999; 121: 6771
    • 21e Kozmin SA, Iwama T, Huang Y, Rawal VH. J. Am. Chem. Soc. 2002; 124: 4628
  • 22 Huehls CB, Hood TS, Yang J. Angew. Chem. Int. Ed. 2012; 51: 5110
  • 23 Hoffmann R. Chem. Rev. 1989; 89: 1841