Synlett 2012; 23(20): 2869-2874
DOI: 10.1055/s-0032-1317545
synpacts
© Georg Thieme Verlag Stuttgart · New York

Alkynes and Azides: Not Just for Click Reactions

I. F. Dempsey Hyatt
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Sullivan Science Building, PO Box 26170, Greensboro, NC 27402, USA   Fax: +1(336)3345402   eMail: mpcroatt@uncg.edu
,
Maria Elena Meza-Aviña
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Sullivan Science Building, PO Box 26170, Greensboro, NC 27402, USA   Fax: +1(336)3345402   eMail: mpcroatt@uncg.edu
,
Mitchell P. Croatt*
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Sullivan Science Building, PO Box 26170, Greensboro, NC 27402, USA   Fax: +1(336)3345402   eMail: mpcroatt@uncg.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 26. September 2012

Accepted after revision: 19. Oktober 2012

Publikationsdatum:
19. November 2012 (online)


Abstract

We recently reported two unexplored reactivities of alkynes and azides. The first method reacts nucleophilic alkynes and electrophilic azides to synthesize sulfonyl-substituted 1,5-disubstituted 1,2,3-triazoles. The second method reacts electrophilic alkynes with nucleophilic azides to form alkynyl azides that immediately extrude dinitrogen to form cyanocarbenes which were trapped by O–H insertion, sulfoxide complexation, and cyclopropanation. The design and discovery of these reactions, along with key observations, is discussed herein.

 
  • References and Notes

    • 1a Kim M, Miller RL, Lee D. J. Am. Chem. Soc. 2005; 127: 12818
    • 1b Cho EJ, Lee D. Org. Lett. 2008; 10: 257
    • 1c Yun SY, Wang K, Kim M, Lee D. J. Am. Chem. Soc. 2010; 132: 8840
    • 1d Banert K, Hagedorn M, Wutke J, Ecorchard P, Schaarschmidt D, Lang H. Chem. Commun. 2010; 4058
    • 2a D’yachkova SG, Nikitina EA, Gusarova NK, Albanov AI, Trofimov BA. Russ. J. Gen. Chem. 2003; 73: 782
    • 2b Prochnow E, Auer AA, Banert K. J. Phys. Chem. A 2007; 111: 9945
    • 2c Helwig R, Hanack M. Chem. Ber. Recl. 1985; 118: 1008
    • 2d Boyer JH, Selvaraj R. J. Am. Chem. Soc. 1969; 91: 6122
    • 2e Tanaka R, Yamabe K. J. Chem. Soc. 1983; 329
    • 2f Boyer JH, Mack CH, Goebel N, Morgan LR. J. Org. Chem. 1958; 23: 1051
    • 2g Kitamura T, Stang PJ. Tetrahedron Lett. 1988; 29: 1887
    • 2h Banert K In Organic Azides – Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010: 115-166
    • 3a Zhao Z.-X, Zhang H.-X, Sun C.-C. J. Phys. Chem. A 2008; 112: 12125
    • 3b Gronert S, Keeffe JR, More O’Ferrall RA. J. Am. Chem. Soc. 2011; 133: 3381
    • 3c Maier G, Reisenauer HP, Rademacher K. Chem.–Eur. J. 1998; 4: 1957
    • 3d Josef K. Chem. Phys. Lett. 2005; 403: 146
  • 4 Forster MO, Newman SH. J. Chem. Soc. 1910; 97: 2570
  • 5 Kim KS, Schaefer HF, Radom L, Pople JA, Binkley JS. J. Am. Chem. Soc. 1983; 105: 4148
    • 6a Hui HK. W, Shechter H. Tetrahedron Lett. 1982; 23: 5115
    • 6b Lodaya JS, Koser GF. J. Org. Chem. 1990; 55: 1513
    • 6c Ochiai M, Kunishima M, Fuji K, Nagao Y. J. Org. Chem. 1988; 53: 6144
    • 6d Koumbis A, Kyzas C, Savva A, Varvoglis A. Molecules 2005; 10: 1340
  • 7 Meza-Aviña ME, Patel MK, Lee CB, Dietz TJ, Croatt MP. Org. Lett. 2011; 13: 2984
    • 8a Yoo EJ, Ahlquist M, Kim SH, Bae I, Fokin VV, Sharpless KB, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1730
    • 8b Wang F, Fu H, Jiang Y, Zhao Y. Adv. Synth. Catal. 2008; 350: 1830
    • 9a Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
    • 9b Krasiński A, Fokin VV, Sharpless KB. Org. Lett. 2004; 6: 1237
    • 9c Kwok SW, Fotsing JR, Fraser RJ, Rodionov VO, Fokin VV. Org. Lett. 2010; 12: 4217
    • 10a Cassidy MP, Raushel J, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3154
    • 10b Yoo EJ, Ahlquist M, Bae I, Sharpless KB, Fokin VV, Chang S. J. Org. Chem. 2008; 73: 5520
    • 10c Yoo EJ, Chang S. Org. Lett. 2008; 10: 1163
  • 11 Yamaguchi M, Miura T, Murakami M. Heterocycles 2010; 80: 177
  • 12 Hyatt IF. D, Croatt MP. Angew. Chem. Int. Ed. 2012; 51: 7511
    • 13a Bachi MD, Bar-Ner N, Crittell CM, Stang PJ, Williamson BL. J. Org. Chem. 1991; 56: 3912
    • 13b Stang PJ. Angew. Chem. 1992; 104: 281
    • 13c Stang PJ, Surber BW, Chen ZC, Roberts KA, Anderson AG. J. Am. Chem. Soc. 1987; 109: 228
    • 13d Stang PJ, Crittell CM. Organometallics 1990; 9: 3191
    • 13e Williamson BL, Stang PJ, Arif AM. J. Am. Chem. Soc. 1993; 115: 2590
    • 14a Zhdankin VV, Scheuller MC, Stang PJ. Tetrahedron Lett. 1993; 34: 6853
    • 14b Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
  • 15 Zefirov NS, Zhdankin VV, Dan’kov YV, Koz’min AS. J. Org. Chem. USSR (Engl. Transl.) 1984; 20: 401
  • 16 The ‘O–H insertion’ is presumably not a concerted O–H insertion due to the strength of O–H bonds but instead more likely involves the addition of the oxygen of MeOH to the carbene followed by subsequent proton transfer.
  • 17 Reich HJ, Biddle MM, Edmonston RJ. J. Org. Chem. 2005; 70: 3375
  • 18 Kitamura T, Zheng L, Taniguchi H, Sakurai M, Tanaka R. Tetrahedron Lett. 1993; 34: 4055
  • 19 Banert K, Arnold R, Hagedorn M, Thoss P, Auer AA. Angew. Chem. Int. Ed. 2012; 51: 7515
  • 20 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 21 Loren JC, Sharpless KB. Synthesis 2005; 1514