Synlett 2013; 24(4): 401-407
DOI: 10.1055/s-0032-1317953
synpacts
© Georg Thieme Verlag Stuttgart · New York

Activating Group Recycling: A Fresh Approach to Arene Functionalization

Jennifer M. Schomaker*
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA   Fax: +1(608)2654534   Email: schomakerj@chem.wisc.edu
,
R. David Grigg
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA   Fax: +1(608)2654534   Email: schomakerj@chem.wisc.edu
› Author Affiliations
Further Information

Publication History

Received: 15 November 2012

Accepted after revision: 05 December 2012

Publication Date:
21 December 2012 (online)

Abstract

Arene and alkene functionalizations are commonly employed in the synthesis of many important molecules. These transformations typically require an activating group, such as a halide or pseudohalide, to ensure reliable regioselectivity and reactivity. However, these groups are ultimately expelled from the final product after a single bond-forming event. A more attractive strategy could accomplish the desired reaction and retain the activating group in the final product. This ‘recycling’ tactic would permit additional bond-forming events to occur in the same reaction vessel, resulting in an increase in the complexity of the product and the atom economy of the reaction. This paper highlights recent examples of arene functionalization where an aryl activating group can be retained in the product. Particular emphasis is placed on methods that use the recycled activating group for further transformations, including examples from our lab that produce diverse molecular structures from simple styrenes.

 
  • References


    • For selected reviews of C–H functionalization, see:
    • 2a Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2d Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 2e Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 2f Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2g Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 2h Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 3a Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 3b Ihara H, Suginome M. J. Am. Chem. Soc. 2009; 131: 7502
    • 3c Robbins DW, Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
    • 3d Dai H.-X, Stepan AF, Plummer MF, Zhang Y.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
    • 3e Huang C, Chattopadhyay B, Grevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
    • 3f Gulevich AV, Melkonyan FS, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 5528
  • 4 Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
  • 5 Grigg R, Sridharan V. J. Organomet. Chem. 1999; 576: 65

    • For examples of C–X reductive elimination in Pd(0)/Pd(II) catalytic cycles, see:
    • 6a Watson DA, Su M, Teverovskiy G, Zhang Y, Garcia-Fortanet J, Kinzel T, Buchwald SL. Science 2009; 325: 1661
    • 6b Shen X, Hyde AM, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14076
    • 6c Roy AH, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 1232
    • 6d Roy AH, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 13944
    • 6e Roy AH, Hartwig JF. Organometallics 2004; 23: 1533
    • 6f Newman SG, Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
  • 7 Newman SG, Howell JK, Nicolaus N, Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
  • 8 Curran DP, Chang C.-T. Tetrahedron Lett. 1990; 31: 933
  • 9 Lan Y, Liu P, Newman SG, Lautens M, Houk KN. Chem. Sci. 2012; 3: 1987
  • 10 Petrone DA, Malik HA, Clemenceau A, Lautens M. Org. Lett. 2012; 14: 4806
  • 11 Jia X, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 9870
    • 12a Liu H, Li C, Qiu D, Tong X. J. Am. Chem. Soc. 2011; 133: 6187
    • 12b Liu H, Chen C, Wang L, Tong X. Org. Lett. 2011; 13: 5072
    • 12c Li Y, Liu X, Jiang H, Liu B, Chen Z, Zhou P. Angew. Chem. Int. Ed. 2011; 50: 6341
  • 13 Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
  • 14 Willis MC. Chem. Rev. 2010; 110: 725
  • 15 Grigg RD, Van Hoveln R, Schomaker JM. J. Am. Chem. Soc. 2012; 134: 16131
  • 16 Grigg RD, Rigoli JW, Van Hoveln R, Neale S, Schomaker JM. Chem. Eur. J. 2012; 18: 9391
    • 17a Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 17b Noh D, Yoon SK, Won J, Lee JY, Yun J. Chem. Asian J. 2011; 6: 1967
    • 17c Won J, Noh D, Yun J, Lee JY. J. Phys. Chem. A 2010; 114: 12112
  • 18 Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2007; 26: 2824
  • 19 Sperotto E, van Klink GP. M, van Koten G, de Vries JG. Dalton Trans. 2010; 39: 10338

    • For selected examples of aryl Cu(III) species from C–X oxidative insertion, see:
    • 21a Maiti D, Sarjeant AA. N, Itoh S, Karlin KD. J. Am. Chem. Soc. 2008; 130: 5644
    • 21b Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem. Sci. 2010; 1: 326
    • 21c Casitas A, Poater A, Sola M, Stahl SS, Costas M, Ribas X. Dalton Trans. 2010; 39: 10458
    • 21d Casitas A, Canta M, Sola M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386
  • 22 Van Hoveln, R.; Schomaker, J. M., unpublished results.