Zentralbl Chir 2013; 138(3): 322-330
DOI: 10.1055/s-0032-1328182
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Was der Chirurg über grundlegend neue Konzepte zur Entzündung und deren therapeutische Konsequenzen wissen sollte: Die Ausheilung der Entzündung ist kein passiver, sondern ein durch Lipidmediatoren regulierter aktiver Prozess[*]

What the Surgeon Needs to Know about Basic New Concepts of Inflammation and their Therapeutic Consequences: Sanitation of Inflammation is not a Passive but rather an Active Process Regulated by Lipid Mediators
A. Gardemann
1   Pathologische Biochemie am Inst. für klinische Chemie & Pathobiochemie, Universitätsklinikum Magdeburg A. ö. R., Deutschland
,
F. Meyer
2   Klinik für Allgemein-, Viszeral- & Gefäßchirurgie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
,
R. Braun-Dullaeus
3   Klinik für Kardiologie, Pulmologie & Angiologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
27 June 2013 (online)

Zusammenfassung

Die akute Entzündung als physiologische Antwort auf schädigende Reize ist u. a. durch komplex regulierte Wirkungen pro- und antiinflammatorischer Mediatoren charakterisiert. Die Forschung der letzten Jahrzehnte hat die Wechselwirkungen dieser Mediatoren weitgehend aufgeklärt und zur Entwicklung antiinflammatorisch wirksamer Medikamente geführt. Allerdings wurde die endgültige Abheilung der akuten Entzündung bis vor wenigen Jahren als passiver Prozess angesehen. Es ist daher nicht verwunderlich, dass die Mechanismen weitgehend unbekannt waren, die entweder zur vollständigen Abheilung mit Wiederherstellung der normalen Funktion oder zur chronischen Entzündung mit Gewebeschädigung und eingeschränkter Funktion führen. Vor allem im letzten Jahrzehnt wurden die sogenannten entzündungsauflösenden Lipidmediatoren (ELM) identifiziert, die in verschiedenen Zellen aus essenziellen Fettsäuren gebildet werden. Diese Mediatoren – Lipoxine, Resolvine, Protektine und Maresine – beenden die akute Entzündungsantwort und stimulieren deren vollständige Abheilung. ELM wirken somit sowohl antiinflammatorisch als auch entzündungsauflösend, indem sie die proinflammatorischen Zytokine hemmen, die Gewebseinwanderung der Neutrophilen eindämmen, die Aufnahme der Makrophagen im entzündeten Gewebe fördern, eine nonphlogistische Aktivierung der Makrophagen bewirken und schließlich die Beseitigung apoptotischer Neutrophilen und mikrobieller Partikel stimulieren. Es konnte in verschiedenen Tiermodellen der humanen chronischen Entzündung nachgewiesen werden, dass z. B. die Atherosklerose, der Diabetes und die chronisch-entzündlichen Darmerkrankungen durch erniedrigte Spiegel der entzündungsauflösenden Lipidmediatoren gekennzeichnet waren und dass deren Substitution zu einer Regression der Krankheitserscheinungen führte. Zukünftige Studien sollen untersuchen, ob die bei den Tiermodellen gewonnenen Erkenntnisse auch auf Entzündungsprozesse des Menschen übertragbar sind und ob die ELM und deren stabile Analoga therapeutisch zur Behandlung akuter und chronischer Entzündungen und deren Komplikationen eingesetzt werden können.

Abstract

The acute inflammatory response as a physiological programme that protects the organism against injurious pathogens is characterised by highly regulated actions of pro- and anti-inflammatory mediators. Intensive investigations during the last decades have led to the identification of these mediators and their complex interplay as well as the design and development of anti-inflammatory therapies. However, the resolution of acute inflammation has long been considered to be a passive process. In consequence, little was known about the mechanisms which guide acute inflammation either to complete resolution, repair of inflamed tissue and restoration of normal function or to a chronic inflammatory process characterised by persistent signs of inflammation, tissue damage and impaired function. Predominantly during the last decade the so-called specialised proresolving mediators (SPM) have been identified. These essential fatty acid-derived mediators – lipoxins, resolvins, protectins, and maresins – terminate the acute inflammatory responses and stimulate their complete resolution. SPM possess both anti-inflammatory and proresolving activities in that they inhibit pro-inflammatory cytokines, limit infiltration of neutrophils, enhance macrophage uptake, and finally stimulate their non-phlogistic activation and clearance of apoptotic neutrophils and microbial particles. It has been demonstrated in multiple animal models of human inflammatory diseases that, e.g., atherosclerosis, diabetes, and inflammatory bowel diseases are caused by a decreased synthesis and/or an impaired signal transduction of the proresolving mediators. Future studies are warranted to clarify whether these proresolving lipid mediators will participate in healing human inflammatory diseases and their complications.

* Prof. Dr. Dr. H. Lippert gewidmet


 
  • Literatur

  • 1 Serhan CN, Chiang N. Lipid-derived mediators in endogenous anti-inflammation and resolution: lipoxins and aspirin-triggered 15-epi-lipoxins. ScientificWorldJournal 2002; 2: 169-204
  • 2 Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nature Immunol 2005; 6: 1191-1197
  • 3 Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 2007; 25: 101-137
  • 4 Serhan CN, Brain SD, Buckley CD et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21: 325-332
  • 5 Serhan CN. Systems approach to inflammation-resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost 2009; 7 (Suppl. 01) 44-48
  • 6 Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 2008; 3: 279-312
  • 7 Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev Immunol 2008; 8: 349-361
  • 8 Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 2008; 153: S200-S215
  • 9 Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation. Impact of aspirin and statins. Circ Res 2010; 107: 1170-1184
  • 10 Norling LV, Serhan CN. Profiling in resolving inflammatory exsudates identifies novel anti-inflammatory and proresolving mediators and signals for termination. J Intern Med 2010; 268: 15-24
  • 11 Bannenberg GL. Therapeutic applicability of anti-inflammatory and proresolving polyunsaturated fatty acid–derived lipid mediators. ScientificWorldJournal 2010; 10: 676-712
  • 12 Smuelsson D, Dahlen SE, Lindgren JA et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Saene 1987; 237: 1171-1176
  • 13 McMahon B, Mitchell S, Brady HR et al. Lipoxins: revelations on resolution. TIPS 2001; 22: 391-395
  • 14 Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 1992; 86: 56-63
  • 15 Romano M, Luciotti G, Gangemi S et al. Urinary excretion of lipoxin A4 and related compounds: development of new extraction techniques for lipoxins. Lab Invest 2002; 82: 1253-1254
  • 16 Lee TH, Horton CE, Kyan-Aung U et al. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin Sci 1989; 77: 195-203
  • 17 Colgan SP. Lipid mediators in epithelial cell-cell interactions. Cell Mol Life Sci 2002; 59: 754-760
  • 18 Papayianni A, Serhan CN, Brady HR. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. J Immunol 1996; 156: 2264-2272
  • 19 Hachicha M, Pouliot M, Petasis NA et al. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA 4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med 1999; 189: 1923-1930
  • 20 Weinberger B, Quizon C, Vetrano AM et al. Mechanisms mediating reduced responsiveness of neonatal neutrophils to lipoxin A 4. Pediatr Res 2008; 64: 393-398
  • 21 Gewirtz AT, Fokin VV, Petasis NA et al. LXA4, aspirin-triggered 15-epi-LXA4, and their analogs selectively downregulate PMN azurophilic degranulation. Am J Physiol 1999; 276: C988-C994
  • 22 Gewirtz AT, McCormick B, Neish AS et al. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J Clin Invest 1998; 101: 1860-1869
  • 23 Godson C, Mitchell S, Harvey K et al. Cutting edge: Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 2000; 164: 1663-1667
  • 24 Maddox JF, Serhan CN. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J Exp Med 1996; 183: 137-146
  • 25 Filep JG, Kebir DE. Neutrophil apoptosis: a target for enhancing the resolution of inflammation. J Cell Biochem 2009; 108: 1039-1046
  • 26 Decker Y, McBean G, Godson C. Lipoxin A4 inhibits IL-1beta-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am J Physiol Cell Physiol 2009; 296: C1420-C1427
  • 27 Fiore S, Maddox JF, Perez HD et al. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 1994; 180: 253-260
  • 28 Serhan CN. Endogenous chemical mediators in anti-inflammation and pro-resolution. Curr Med Chem 2002; 1: 177-192
  • 29 Chiang N, Bermudez EA, Ridker PM et al. Aspirin triggers antiinflammatory 15-epi-lipoxin A 4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci USA 2004; 101: 15178-15183
  • 30 Morris T, Stables M, Hobbs A et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol 2009; 183: 2089-2096
  • 31 Serhan CN, Fiore S, Brezinski DA et al. Lipoxin A4 metabolism by differentiated HL-60 cells and human monocytes: conversion to novel 15-oxo and dihydro products. Biochemistry 1993; 32: 6313-6319
  • 32 Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are endogenous components of antiinflammation: emergence of the counterregulatory side. Arch Immunol Ther Exp 2001; 49: 177-188
  • 33 Luscinskas FW, Nicolaou KC, Webber SE et al. Ca2+ mobilization with leukotriene A4 and epoxytetraenes in human neutrophils. Biochem Pharmacol 1990; 39: 355-365
  • 34 Romano M, Maddox JF, Serhan CN. Activation of human monocytes and the acute monocytic leukemia cell line (THP-1) by lipoxins involves unique signaling pathways for lipoxin A4 versus lipoxin B4: evidence for differential Ca2+ mobilization. J Immunol 1996; 157: 2149-2154
  • 35 Karp CL, Flick LM, Park KW et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 2004; 5: 388-392
  • 36 Levy BD, Bonnans C, Silverman ES et al. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 2005; 172: 824-830
  • 37 Kowal-Bielecka O, Kowal K, Distler O et al. Cyclooxygenase- and lipoxygenase-derived eicosanoids in bronchoalveolar lavage fluid from patients with scleroderma lung disease: an imbalance between proinflammatory and antiinflammatory lipid mediators. Arthritis Rheum 2005; 52: 3783-3791
  • 38 Lands WE. Biochemistry and physiology of n-3 fatty acids. FASEB J 1992; 6: 2530-2536
  • 39 Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 2007; 10: 136-141
  • 40 Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 1999; 83: 217-244
  • 41 Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929; 82: 345-367
  • 42 Calder PC. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 2009; 91: 791-795
  • 43 von Schacky C. Omega-3 fatty acids and cardiovascular disease. Curr Opin Clin Nutr Metab Care 2007; 10: 129-135
  • 44 Chiang N, Serhan CN. Cell-cell interaction in the transcellular biosynthesis of novel omega-3-derived lipid mediators. Methods Mol Biol 2006; 341: 227-250
  • 45 Bannenberg GL. Resolvins: current understanding and future potential in the control of inflammation. Curr Opin Drug Discov Dev 2009; 12: 644-658
  • 46 Serhan CN, Hong S, Gronert K et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 2002; 196: 1025-1037
  • 47 Sun YP, Oh SF, Uddin J et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 2007; 282: 9323-9334
  • 48 Arita M, Bianchini F, Aliberti J et al. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 2005; 201: 713-722
  • 49 Ariel A, Fredman G, Sun YP et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 2006; 7: 1209-1216
  • 50 Bannenberg GL, Chiang N, Ariel A et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol 2005; 174: 4345-4355
  • 51 Serhan CN, Clish CB, Brannon J et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 2000; 192: 1197-1204
  • 52 Schwab JM, Chiang N, Arita M et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447: 869-874
  • 53 Hong S, Porter TF, Lu Y et al. Resolvin E1 metabolome in local inactivation during inflammation-resolution. J Immunol 2008; 180: 3512-3519
  • 54 Dona M, Fredman G, Schwab JM et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 2008; 112: 848-855
  • 55 Arita M, Oh SF, Chonan T et al. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J Biol Chem 2006; 281: 22847-22854
  • 56 Jin Y, Arita M, Zhang Q et al. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Invest Ophthalmol Vis Sci 2009; 50: 4743-4752
  • 57 Connor KM, SanGiovanni JP, Löfqvist C et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007; 13: 868-873
  • 58 Wittamer V, Franssen JD, Vulcano M et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198: 977-985
  • 59 Krishnamoorthy S, Recchiuti A, Chiang N et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA 2010; 107: 1660-1665
  • 60 Hong S, Gronert K, Devchand PR et al. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 2003; 278: 14677-14687
  • 61 Serhan CN, Gotlinger K, Hong S et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 2006; 176: 1848-1859
  • 62 Mukherjee PK, Marcheselli VL, Serhan CN et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 2004; 10: 8491-8496
  • 63 Gronert K, Maheshwari N, Khan N et al. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem 2005; 280: 15267-15278
  • 64 Serhan CN, Yang R, Martinod K et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 2009; 206: 15-23
  • 65 Serhan CN, Dalli J, Karamnov S et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J 2012; 26: 1755-1765
  • 66 Levy BD, Clish CB, Schmidt B et al. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2001; 2: 612-619
  • 67 Gilroy DW, Colville-Nash PR, Willis D et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 1999; 5: 698-701
  • 68 Dinarello CA. Anti-inflammatory agents: present and future. Cell 2010; 140: 935-950
  • 69 Ridker PM, Danielson E, Fonseca FA et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195-2207
  • 70 Birnbaum Y, Ye Y, Lin Y et al. Augmentation of myocardial production of 15-epi-lipoxin-A4 by pioglitazone and atorvastatin in the rat. Circulation 2006; 114: 929-935
  • 71 Horrillo R, Gonzalez-Periz A, Martínez-Clemente M et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J Immunol 2010; 184: 3978-3987
  • 72 Gonzalez-Periz A, Horrillo R, Ferre N et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 2009; 23: 1946-1957
  • 73 Ho KJ, Spite M, Owens CD et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle cell phenotype and correlate with peripheral atherosclerosis. Am J Pathol 2010; 177: 2116-2123
  • 74 Merched AJ, Ko K, Gotlinger KH et al. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 2008; 22: 3595-3606
  • 75 Birnbaum Y, Ye Y, Lin Y et al. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat 2007; 83: 89-98
  • 76 Mangino MJ, Brounts L, Harms B et al. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat 2006; 79: 84-92
  • 77 Fiorucci S, Wallace JL, Mencarelli A et al. A beta-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc Natl Acad Sci USA 2004; 101: 15736-15741
  • 78 Arita M, Yoshida M, Hong S et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA 2005; 102: 7671-7676
  • 79 Ott J, Hiesgen C, Mayer K. Lipids in critical care medicine. Prostaglandins, Leucotriens and Essential Fatty Acids 2011; 85: 267-273
  • 80 Pontes-Arruda A, Demichele S, Seth A et al. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. J Parenter Enteral Nutr 2008; 32: 596-605
  • 81 Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med 2008; 34: 1980-1990
  • 82 Bertolini G, Iapichino G, Radrizzani D et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 2003; 29: 834-840
  • 83 Pontes-Arruda A, Aragao AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 2006; 34: 2325-2333
  • 84 Wang X, Li W, Li N et al. Omega-3 fatty acids-supplemented parenteral nutrition decreases hyperinflammatory response and attenuates systemic disease sequelae in severe acute pancreatitis: a randomized and controlled study. J Parenter Enteral Nutr 2008; 32: 236-241
  • 85 Murakami T, Suzuki K, Tamura H et al. Suppressive action of resolvin D1 on the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. Exp Ther Med 2011; 2: 57-61
  • 86 Spite M, Norling LV, Summers L. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 2009; 461: 1287-1291
  • 87 Heller AR, Rössel T, Gottschlich B et al. Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients. Int J Cancer 2004; 111: 611-616
  • 88 Antebi H, Mansoor O, Ferrier F et al. Liver function and plasma antioxidant status in intensive care unit patients requiring total parenteral nutrition: comparison of 2 fat emulsions. J Parenter Enteral Nutr 2004; 28: 142-148
  • 89 Berger MM, Tappy L, Revelly JP et al. Fish oil after abdominal aorta aneurysm surgery. Eur J Clin Nutr 2008; 62: 1116-1122
  • 90 Pluess TT, Hayoz D, Berger MM et al. Intravenous fish oil blunts the physiological response to endotoxin in healthy subjects. Intensive Care Med 2007; 33: 789-797
  • 91 Tsekos E, Reuter C, Stehle P et al. Perioperative administration of parenteral fish oil supplements in a routine clinical setting improves patient outcome after major abdominal surgery. Clin Nutr 2004; 23: 325-330
  • 92 Wichmann MW, Thul P, Czarnetzki HD et al. Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): data from a prospective, randomized, multicenter trial. Crit Care Med 2007; 35: 700-706
  • 93 Mertes N, Grimm H, Fürst P et al. Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study. Ann Nutr Metab 2006; 50: 253-259
  • 94 Chen B, Zhou Y, Yang P et al. Safety and efficacy of fish oil-enriched parenteral nutrition regimen on postoperative patients undergoing major abdominal surgery: a meta-analysis of randomized controlled trials. J Parenter Enteral Nutr 2010; 34: 387-394
  • 95 Weimann A, Braga M, Harsanyi L et al. ESPEN Guidelines on Enteral Nutrition: surgery including organ transplantation. Clin Nutr 2006; 25: 224-244
  • 96 Rossi AG, Sawatzky DA. The Resolution of Inflammation. Basel: Birkhäuser Verlag AG; 2007
  • 97 Serhan CN, Maddox JF, Petasis NA et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 1995; 34: 14609-14615
  • 98 Rossi AG, Sawatzky DA, Walker A et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Med 2006; 12: 1056-1064