Synlett 2014; 25(20): 2957-2961
DOI: 10.1055/s-0034-1378905
letter
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Enantioselective Approach to Spirocyclic Δβ,γ-Butenolides

Joanna Hejmanowska
Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland   Email: [email protected]
,
Marek Dzięgielewski
Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland   Email: [email protected]
,
Dorota Kowalczyk
Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland   Email: [email protected]
,
Łukasz Albrecht*
Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 27 August 2014

Accepted after revision: 02 October 2014

Publication Date:
18 November 2014 (online)


Abstract

A novel method for the preparation of the spirocyclic Δβ,γ-butenolides is presented. The developed strategy is based on a trienamine-mediated [4+2]-cycloaddition between (E)-3-alkylidene-5-arylfuran-2(3H)-ones and 2,4-dienals. Target products containing three contiguous centres including one quaternary are efficiently formed in a highly enantiomerically enriched form in the presence of the silyl-protected diphenylprolinol aminocatalyst.

 
  • References and Notes


    • For seminal reports, see:
    • 1a List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 1b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243

    • For selected reviews, see:
    • 1c List B. Chem. Commun. 2006; 819
    • 1d Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 1e Mukherjee S, Yang J.-W, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1f Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 1g Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
    • 1h Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248

      For selected reviews, see:
    • 2a Ramachary DB, Reddy YV. Eur. J. Org. Chem. 2012; 865
    • 2b Li J.-L, Liu T.-Y, Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
    • 2c Kumar I, Ramaraju P, Mir NA. Org. Biomol. Chem. 2013; 11: 709
    • 2d Jiang H, Albrecht Ł, Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 2e Jurberg ID, Chatterjee I, Tannert R, Melchiorre P. Chem. Commun. 2013; 49: 4869
    • 2f Reboredo S, Parra A, Alemán J. Asym. Organocatal. 2013; 24
    • 3a Rao YS. Chem. Rev. 1964; 64: 353
    • 3b Rao YS. Chem. Rev. 1976; 76: 625
    • 3c Hashem A, Senning A. Adv. Heterocycl. Chem. 1999; 73: 275
    • 3d Hashem A, Kleinpeter E. Adv. Heterocycl. Chem. 2001; 81: 107
    • 3e Ospina CA, Rodríguez AD. Org. Lett. 2009; 11: 3786
    • 3f Yu Z.-G, Li J, Li Z.-Y, Guo Y.-W. Chem. Biodiversity 2009; 6: 858

      For recent, selected examples, see:
    • 4a Giera DS, Stark CB. W. RSC Adv. 2013; 3: 21280
    • 4b Munoz A, Murelli RP. Tetrahedron Lett. 2012; 53: 6779
    • 4c Kemppainen EK, Sahoo G, Valkonen A, Pihko PM. Org. Lett. 2012; 14: 1086
    • 4d Fournier J, Arseniyadis S, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 7562
    • 4e Costas T, Besada P, Piras A, Acevedo L, Yanez M, Orallo F, Laguna R, Teran C. Bioorg. Med. Chem. Lett. 2010; 20: 6624

      For selected examples, see:
    • 5a Suga H, Kitamura T, Kakehi A, Baba T. Chem. Commun. 2004; 1414
    • 5b Brown SP, Goodwin NC, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 1192
    • 5c Yang H, Kim S. Synlett 2008; 555
    • 5d Mandai H, Mandai K, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 17961
    • 5e Carswell EL, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2006; 45: 7230
    • 5f Jiang Y.-Q, Shi Y.-L, Shi M. J. Am. Chem. Soc. 2008; 130: 7202
    • 5g Boeckman RK. Jr, Pero JE, Boehmler DJ. J. Am. Chem. Soc. 2006; 128: 11032
    • 5h Frings M, Atodiresei I, Runsink J, Raabe G, Bolm C. Chem. Eur. J. 2009; 15: 1566
    • 5i Gao S.-H, Wang Q.-L, Chen C. J. Am. Chem. Soc. 2009; 131: 1410

      For example, see:
    • 6a Shaw SA, Aleman P, Christy J, Kampf JW, Va P, Vedejs E. J. Am. Chem. Soc. 2006; 128: 925
    • 6b Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
    • 6c Joannesse C, Morrill L, Campbell C, Slawin A, Smith A. Synthesis 2011; 1865
    • 6d Chen J, Ni S, Ma S. Adv. Synth. Catal. 2012; 354: 1114
    • 6e Fournier J, Lozano O, Menozzi C, Arseniyadis S, Cossy J. Angew. Chem. Int. Ed. 2013; 52: 1257
    • 6f Xie X, Li Y, Fox JM. Org. Lett. 2013; 15: 1500
  • 7 Representative Procedure: An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding (E)-3-arylidene-5-arylfuran-2(3H)-one 2 (0.2 mmol, 1 equiv), catalyst 3b (0.04 mmol, 0.2 equiv), CH2Cl2 (0.4 mL) and the corresponding 2,4-dienal 1 (0.6 mmol, 3 equiv). The reaction mixture was stirred at r.t. and monitored by 1H NMR spectroscopy. After 24 h the reaction mixture was directly submitted to Ramirez olefination. In a separate screw-cap vial carbon tetrabromide (0.3 mmol, 3.0 equiv) was dissolved in CH2Cl2 (0.5 mL) and cooled to –5 °C. Triphenylphosphine (0.6 mmol, 6.0 equiv) was added in one portion and after 5 min the reaction mixture was added dropwise at –5 °C. After 10 min at 0 °C the reaction mixture was directly subjected to flash chromatography on silica gel to afford the target product 5.
  • 8 CCDC 1007871 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    • For example, see:
    • 9a Jia Z.-J, Jiang H, Li J.-L, Gschwend B, Li Q.-Z, Ying X, Grouleff J, Chen Y.-C, Jørgensen KA. J. Am. Chem. Soc. 2011; 133: 5053
    • 9b Jiang H, Gschwend B, Albrecht Ł, Hansen SG, Jørgensen KA. Chem. Eur. J. 2011; 17: 9032
    • 9c Zhu K, Huang H, Wu W, Wei Y, Ye J. Chem. Commun. 2013; 49: 2157
    • 9d Li X, Lin M.-H, Han Y, Wang F, Cheng J.-P. Org. Lett. 2014; 16: 114
  • 10 Data for 5a: 6-(3,3-Dibromoallyl)-3,10-diphenyl-2-oxaspiro[4.5]deca-3,7-dien-1-one (Table 2, Entry 1): Following the general procedure, 5a was isolated by flash chromatography on silica (gradient: hexane–Et2O from 100:0 to 100:6) in 65% yield as a colourless oil (dr = 3.5:1). (5S,6S,10R)-5a: 1H NMR (700 MHz, CDCl3): δ = 7.56–7.59 (m, 2 H), 7.38–7.43 (m, 3 H), 7.24–7.31 (m, 5 H), 6.48 (dd, J = 8.2, 6.6 Hz, 1 H), 6.10 (ddt, J = 10.3, 3.7, 1.8 Hz, 1 H), 5.85 (ddd, J = 10.0, 3.8, 2.0 Hz, 1 H), 5.72 (s, 1 H), 3.33 (t, J = 6.6 Hz, 1 H), 2.79 (dddd, J = 16.9, 6.2, 3.9, 2.0 Hz, 1 H), 2.62 (ddd, J = 14.4, 6.6, 4.3 Hz, 1 H), 2.44–2.53 (m, 2 H), 2.36 (ddd, J = 14.3, 10.1, 8.2 Hz, 1 H). 13C NMR (176 MHz, CDCl3): δ = 177.1, 152.2, 140.5, 136.1, 129.9, 128.8 (2 × C), 128.8 (2 × C), 128.3, 128.5 (2 × C), 127.9, 127.6, 126.7, 125.1 (2 × C), 105.8, 90.9, 55.6, 43.1, 39.7, 34.4, 29.6. HRMS: m/z [M + Na]+ calcd for C24H20Br2O2: 522.9707; found: 522.9710. The ee was determined by HPLC using a Chiralpak IA column [hexane–i-PrOH (98:2)]; flow rate: 1.0 mL/min; t R (major) = 13.2 min, t R (minor) = 11.5 min (98% ee); [α]D 20 +0.8 (c = 1.2, CHCl3).