Synlett 2014; 25(18): 2531-2535
DOI: 10.1055/s-0034-1379214
synpacts
© Georg Thieme Verlag Stuttgart · New York

A New Method for the Synthesis of 1,4-Diols: C(sp3)–H Hydroxylation Induced by Iron-Catalyzed Redox Hydration of Alkenes

Tsuyoshi Taniguchi*
a  School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Fax: +81(76)2344439   Email: tsuyoshi@p.kanazawa-u.ac.jp
,
Daisuke Hirose
b  Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
,
Takuma Hashimoto
a  School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Fax: +81(76)2344439   Email: tsuyoshi@p.kanazawa-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 08 August 2014

Accepted after revision: 04 September 2014

Publication Date:
15 October 2014 (online)

Abstract

A novel method for the synthesis of 1,4-diols from alkenes is presented. The reaction is the basis of iron-catalyzed redox hydration of alkenes. The second hydroxyl group is introduced by hydroxylation of an inert C–H bond. The mechanism includes a radical 1,5-hydrogen-transfer process of an intermediary alkoxy radical. In this paper, we describe how this new method has been discovered and developed.

 
  • References and Notes


    • Recently, anti-Markovnikov hydration and related reactions were reported:
    • 2a Dong G, Teo P, Wickens ZK, Grubbs RH. Science 2011; 333: 1609
    • 2b Li L, Herzon SB. J. Am. Chem. Soc. 2012; 134: 17376
    • 2c Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2013; 134: 18577
    • 3a Simmons EM, Hartwig JF. Nature (London, UK) 2012; 483: 70
    • 3b Gómez L, Canta M, Font D, Prat I, Ribas X, Costas M. J. Org. Chem. 2013; 78: 1421
    • 3c Moteki SA, Usui A, Zhang T, Solorio Alvarado CR, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 8657
    • 3d Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
    • 3e Adams AM, Du Bois J. Chem. Sci. 2014; 5: 656 ; and references cited therein
    • 4a Godula K, Sames D. Science 2006; 312: 67
    • 4b Baran PS, Ishihara Y. Synlett 2010; 1733
    • 4c Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 4d White MC. Science 2012; 335: 807
    • 4e Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 5a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 5b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 5c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 5d Ackermann L. Chem. Rev. 2011; 111: 1315
  • 6 Recupero F, Punta C. Chem. Rev. 2007; 107: 3800

    • Recent examples:
    • 7a Zhu Y, Wei Y. Chem. Sci. 2014; 5: 2379
    • 7b Fenghua ZL, Yang FJ, Liu Z.-Q. Org. Lett. 2014; 16: 3396
    • 8a Čeković Ž. Tetrahedron 2003; 59: 8073
    • 8b Chiba S, Chen H. Org. Biomol. Chem. 2014; 12: 4051
    • 9a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 9b Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076

      Review:
    • 10a Wolff ME. Chem. Rev. 1963; 63: 55

    • A recent application of this reaction:
    • 10b Chen K, Richter JM, Baran PS. J. Am. Chem. Soc. 2008; 130: 7247
  • 11 Okamoto T, Oka S. J. Org. Chem. 1984; 49: 1589
  • 12 Sugimori T, Horike S.-i, Tsumura S, Handa M, Kasuga K. Inorg. Chim. Acta 1998; 283: 275
    • 13a Prateeptongkum S, Jovel I, Jackstell R, Vogl N, Weckbecker C, Beller M. Chem. Commun. 2009; 1990
    • 13b Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
    • 13c Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
    • 13d Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304

      Representative examples of similar reactions by cobalt catalysis:
    • 14a Mukaiyama T, Isayama S, Inoki S, Kato K, Yamada T, Takai T. Chem. Lett. 1989; 449
    • 14b Kato K, Yamada T, Takai T, Inoki S, Isayama S. Bull. Chem. Soc. Jpn. 1990; 63: 179
    • 14c Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
    • 14d Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
    • 15a Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112

    • For additions and corrections, see:
    • 15b Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 5084
  • 16 Unpublished data.
  • 17 Hashimoto T, Hirose D, Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
    • 18a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 18b Piera J, Bӓckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
    • 18c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
  • 19 An example of an approach to the ideal synthesis using molecular oxygen: Hu X, Maimone TJ. J. Am. Chem. Soc. 2014; 136: 5287
    • 20a Nam W, Lim MH, Oh S.-Y, Lee JH, Lee HJ, Woo SK, Kim C, Shin W. Angew. Chem. Int. Ed. 2000; 39: 3646
    • 20b Nam W, Lim MH, Oh S.-Y. Inorg. Chem. 2000; 39: 5572
    • 20c Nam W, Jin SW, Lim MH, Ryu JY, Kim C. Inorg. Chem. 2002; 41: 3647
    • 21a de la Pradilla RF, Colomer I, Ureña M, Viso A. Org. Lett. 2011; 13: 2468
    • 21b Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950
    • 21c Robinson A, Aggarwal VK. Org. Biomol. Chem. 2012; 10: 1795
    • 21d Too PC, Tnay YL, Chiba S. Beilstein J. Org. Chem. 2013; 9: 1217
    • 21e Ghavtadze N, Melkonyan FS, Gulevich AV, Huang C, Gevorgyan V. Nat. Chem. 2014; 6: 122
  • 22 For instance, the cumene process is currently the industrial method to manufacture phenol, though the total yield of phenol is only around 5%: Molinari R, Poerio T. Asia-Pac. J. Chem. Eng. 2010; 5: 191