Synlett 2014; 25(19): 2673-2680
DOI: 10.1055/s-0034-1379363
synpacts
© Georg Thieme Verlag Stuttgart · New York

Ground- and Excited-State Quinones: Perspectives in Organocatalysis and Visible-Light Photocatalysis

Stephanie Lerch
University of Hamburg, Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: malte.brasholz@chemie.uni-hamburg.de
,
Lisa-Natascha Unkel
University of Hamburg, Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: malte.brasholz@chemie.uni-hamburg.de
,
Patrick Wienefeld
University of Hamburg, Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: malte.brasholz@chemie.uni-hamburg.de
,
Malte Brasholz*
University of Hamburg, Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: malte.brasholz@chemie.uni-hamburg.de
› Author Affiliations
Further Information

Publication History

Received: 19 July 2014

Accepted: 22 August 2014

Publication Date:
02 October 2014 (online)

Abstract

Quinone organocatalysis is an emerging area, and this report highlights some recently developed thermal and photocatalytic reactions, with particular emphasis on photooxygenation reactions. Further, it is discussed how the orthogonal ground- and excited-state reactivities of quinones can be utilized for the development of tandem catalytic processes.

 
  • References

  • 1 The Chemistry of Quinonoid Compounds . Patai S, Rappaport Z. Wiley; New York: 1988
  • 4 Miyamura H, Shiramizu M, Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2008; 47: 8093 ; Angew. Chem. 2008, 120, 8213
  • 5 Chandrasekhar S, Sumithra G, Yadav JS. Tetrahedron Lett. 1996; 37: 1645
    • 6a Sharma GV. M, Lavanya B, Mahalingam AK, Krisha PR. Tetrahedron Lett. 2000; 41: 10323
    • 6b Cosner CC, Cabrera PJ, Byrd KM, Adams Thomas AM, Helquist P. Org. Lett. 2011; 13: 2071
  • 7 Liu L, Floreancing P. Org. Lett. 2010; 12: 4686
  • 8 Zhang W, Ma H, Zhou L, Sun Z, Du Z, Miao H, Xu J. Molecules 2008; 13: 3236
  • 9 Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
  • 10 Mure M, Mills SA, Klinman JP. Biochemistry 2002; 41: 9269
    • 11a Mure M. Acc. Chem. Res. 2004; 37: 131
    • 11b Largeron M, Fleury M.-B. Science 2013; 339: 43
  • 12 Wendlandt AE, Stahl SS. Org. Lett. 2012; 14: 2850
  • 13 Lerch S, Unkel L.-N, Brasholz M. Angew. Chem. Int. Ed. 2014; 53: 6558 , Angew. Chem. 2014, 126, 6676
  • 14 Imm S, Bähn S, Tillack A, Mevius K, Neubert L, Beller M. Chem. Eur. J. 2010; 16: 2705
  • 15 Siddiki SM. A. H, Kon K, Shimizu K. Chem. Eur. J. 2013; 19: 14416
    • 16a Mech J, Grela MA, Szaciłowski K. Dyes Pigm. 2014; 103: 202
    • 16b Rath MC, Pal H, Mukherjee T. Radiat. Phys. Chem. 1996; 47: 221
    • 16c Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 16d Hamonue K, Kajiwara Y, Miyake T, Nakayama T, Hirase S, Teranishi H. Chem. Phys. Lett. 1983; 94: 276
    • 16e Anouar EH, Osman CP, Weber J.-FF, Ismail NH. Springerplus 2014; 3: 233
    • 16f Ritter J, Borst H.-U, Lindner T, Hauser M, Brosig S, Bredereck K, Steiner UE, Kühn D, Kelemen J, Kramer HE. A. J. Photochem. Photobiol., A 1988; 41: 227
    • 16g Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
    • 16h Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951 ; Angew. Chem. 2011, 123, 981
    • 18a Rehm D, Weller A. Ber. Bunsen-Ges. 1969; 73: 834
    • 18b Rehm D, Weller A. Isr. J. Chem. 1970; 8: 259
    • 18c Weller A. Pure Appl. Chem. 1982; 54: 1885
  • 19 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
    • 20a Cui L, Matsusaki Y, Tada N, Miura T, Uno B, Itoh A. Adv. Synth. Catal. 2013; 355: 2203
    • 20b Yamaguchi T, Nobuta T, Tada N, Miura T, Nakayama T, Uno B, Itoh A. Synlett 2014; 25: 1453
    • 20c Tachikawa Y, Cui L, Matsusaki Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 6218
    • 20d Shimada Y, Hattori K, Tada N, Miura T, Itoh A. Synthesis 2013; 45: 2684
    • 20e Cui L, Tada N, Okubo H, Miura T, Itoh A. Green Chem. 2011; 13: 2347
  • 21 Campos-Martin JM, Blanco-Brieva G, Fierro JL. G. Angew. Chem. Int. Ed. 2006; 45: 6962 ; Angew. Chem. 2006, 118, 7116
  • 22 Gollnick K, Held S, Mártire DO, Braslavsky SE. J. Photochem. Photobiol., A 1992; 69: 155
  • 23 Byteva IM, Gurinovich GP, Golomb OL, Karpov VV. Zh. Prikl. Spektrosk. 1986; 44: 589
  • 24 Gottschalk P, Paczkowski J, Neckers DC. J. Photochem. 1986; 35: 277
  • 25 Bhattacharyya K, Das PK. Chem. Phys. Lett. 1985; 116: 326
    • 26a Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 26b Ajamian A, Gleason JL. Angew. Chem. Int. Ed. 2004; 43: 3754 ; Angew. Chem. 2004, 116, 3842
  • 27 Movassaghi M, Schmidt MA, Ashenhurst JA. Org. Lett. 2008; 10: 4009
  • 28 Barckholtz C, Barckholtz TA, Hadad CM. J. Am. Chem. Soc. 1999; 12: 491
  • 29 Sanderson RT. Chemical Bonds and Bond Energy . Academic Press; New York: 1976
  • 30 The proposed mechanism was supported by control experiments in the absence of an anthraquinone catalyst; see ref. 13.