Synlett 2015; 26(05): 572-579
DOI: 10.1055/s-0034-1379964
synpacts
© Georg Thieme Verlag Stuttgart · New York

Strategies for the Synthesis of Antifeedant Leucosceptroid Natural Products

Cedric L. Hugelshofer
Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandstr. 5–13, 81377 Munich, Germany   Email: thomas.magauer@lmu.de
,
Thomas Magauer*
Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandstr. 5–13, 81377 Munich, Germany   Email: thomas.magauer@lmu.de
› Author Affiliations
Further Information

Publication History

Received: 30 October 2014

Accepted after revision: 09 December 2014

Publication Date:
12 January 2015 (online)

Abstract

The evolving pathogen resistance in agricultural pests requires the development of novel chemical agents to maintain efficient pest control. Biological screening of natural products isolated from Leucosceptrum canum Smith led to the discovery of active antifeedant sesterterpenoids. This article highlights recent progress towards the synthesis of these natural products.

1 Introduction

2 Synthesis of the Leucosceptroid Core Structure

3 Total Synthesis of Leucosceptroid B

4 Towards the Collective Synthesis of Leucosceptroid Natural Products

5 Total Synthesis of Leucosceptroids A and B

6 Summary

 
  • References and Notes

  • 1 For a recent review of natural product syntheses involving the preparation of gram-scale quantities of a target compound or intermediate, see: Kuttruff CA, Eastgate MD, Baran PS. Nat. Prod. Rep. 2014; 31: 419
  • 2 Wender PA. Chem. Rev. 1996; 96: 1
  • 3 Trost BM. Science 1991; 254: 1471
  • 4 Young IS, Baran PS. Nat. Chem. 2009; 1: 193
  • 5 Wu K.-M, Lu Y.-H, Feng H.-Q, Jiang Y.-Y, Zhao J.-Z. Science 2008; 321: 1676
  • 6 Bhonwong A, Stout MJ, Attajarusit J, Tantasawa P. J. Chem. Ecol. 2009; 35: 28
    • 7a Sandoval-Mojica AF, Capinera JL. Pest Manage. Sci. 2011; 67: 860
    • 7b Koul O. Crit. Rev. Plant Sci. 2008; 27: 1
    • 7c Ballesta-Acosta MC, Pascual-Villalobos MJ, Rodríguez B. Span. J. Agric. Res. 2008; 6
    • 7d Isman MB. Annu. Rev. Entomol. 2006; 51: 45
    • 8a Luo S.-H, Luo Q, Niu X.-M, Xie M.-J, Zhao X, Schneider B, Gershenzon J, Li S.-H. Angew. Chem. Int. Ed. 2010; 49: 4471
    • 8b Luo S.-H, Weng L.-H, Xie M.-J, Li X.-N, Hua J, Zhao X, Li S.-H. Org. Lett. 2011; 13: 1864
    • 8c Luo S.-H, Hua J, Niu X.-M, Liu Y, Li C.-H, Zhou Y.-Y, Jing S.-X, Zhao X, Li S.-H. Phytochemistry 2013; 86: 29
    • 8d Luo S.-H, Hua J, Li C.-H, Liu Y, Li X.-N, Zhao X, Li S.-H. Tetrahedron Lett. 2013; 54: 235
  • 9 Luo S.-H, Hua J, Li C.-H, Jing S.-X, Liu Y, Li X.-N, Zhao X, Li S.-H. Org. Lett. 2012; 14: 5768
  • 10 Luo S.-H, Hugelshofer CL, Hua J, Jing S.-X, Li C.-H, Liu Y, Li X.-N, Zhao X, Magauer T, Li S.-H. Org. Lett. 2014; 16: 6416
  • 11 Hog DT, Webster R, Trauner D. Nat. Prod. Rep. 2012; 29: 752
  • 12 Xie J, Ma Y, Horne DA. J. Org. Chem. 2011; 76: 6169
  • 13 Huang X, Song L, Xu J, Zhu G, Liu B. Angew. Chem. Int. Ed. 2013; 52: 952
  • 14 Hugelshofer CL, Magauer T. Angew. Chem. Int. Ed. 2014; 53: 11351
  • 15 Guo S, Liu J, Ma D. Angew. Chem. Int. Ed. 2014; 53 in press; DOI: 10.1002/anie.201410134
  • 16 Cheng H, Stark CB. W. Angew. Chem. Int. Ed. 2010; 49: 1587
  • 17 Esteban J, Costa AM, Gomez A, Vilarrasa J. Org. Lett. 2008; 10: 65
  • 18 Brown HC, Jadhav PK, Bhat KS. J. Am. Chem. Soc. 1988; 110: 1535
  • 19 Corey EJ, Guzman-Perez A, Noe MC. J. Am. Chem. Soc. 1995; 117: 10805
  • 20 Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
  • 21 Our synthetic route for the synthesis of leucosceptroid natural products proceeding via dilactone 33 was developed following a first-generation approach. Details of our initial efforts, which ultimately proved unsuccessful, will be reported in due course.
    • 22a Comito RJ, Finelli FG, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 9358
    • 22b Pham PV, Ashton K, MacMillan DW. C. Chem. Sci. 2011; 2: 1470