Synlett 2015; 26(12): 1643-1648
DOI: 10.1055/s-0034-1380616
synpacts
© Georg Thieme Verlag Stuttgart · New York

Structural Revision of Uprolide G Acetate: Effective Interplay between NMR Data Analysis and Chemical Synthesis

Liangyu Zhu
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. of China   Email: rtong@ust.hk
,
Rongbiao Tong*
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. of China   Email: rtong@ust.hk
› Author Affiliations
Further Information

Publication History

Received: 13 March 2015

Accepted after revision: 27 March 2015

Publication Date:
04 May 2015 (online)

Abstract

The molecular structure of the cytotoxic cembranolide uprolide G acetate (UGA) was proposed in 1995 and subsequently revised in 2000 on the basis that NMR data for UGA were very similar to those of a synthetic analogue that was unambiguously confirmed by X-ray diffraction analysis. Our synthetic studies of UGA suggested that the revised structure for UGA was still incorrect. Therefore, two new possible structures for UGA were proposed based on comprehensive NMR data analysis. The proposed structures were synthesized in 33 steps by exploitation of Achmatowicz rearrangement, ring-closing metathesis, and Sharpless asymmetric dihydroxylation as the key steps. Their analysis led to the identification of the correct structure for UGA. The success of structural revision of UGA illustrated well the importance of the interplay between NMR data analysis and chemical synthesis.

 
  • References and Notes


    • For selected reviews, see:
    • 1a Butler MS. Nat. Prod. Rep. 2005; 22: 162
    • 1b Baker DD, Chu M, Oza U, Rajgarhia V. Nat. Prod. Rep. 2007; 24: 1225
    • 1c Ganesan A. Curr. Opin. Chem. Biol. 2008; 12: 306
    • 1d Harvey AL. Drug Discov. Today 2008; 13: 894
    • 1e Morris JC, Phillips AJ. Nat. Prod. Rep. 2011; 28: 269
    • 1f Newman DJ, Cragg GM. J. Nat. Prod. 2012; 75: 311

      For recent reviews covering modern methods of structure elucidation, see:
    • 3a Murata M, Yasumoto T. Nat. Prod. Rep. 2000; 17: 293
    • 3b Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R. Chem. Rev. 2007; 107: 3744
    • 3c Menche D. Nat. Prod. Rep. 2008; 25: 905

      For reviews covering incorrectly assigned structures of natural products and their structural revisions by total synthesis, see:
    • 4a Nicolaou KC, Snyder SA. Angew. Chem. Int. Ed. 2005; 44: 1012
    • 4b Maier ME. Nat. Prod. Rep. 2009; 26: 1105
    • 4c Suyama TL, Gerwick WH, McPhail KL. Bioorg. Med. Chem. 2011; 19: 6675

    • For selected recent examples, see:
    • 4d Song Y, Lee KH, Lin Z, Tong R. J. Org. Chem. 2014; 79: 1493
    • 4e Terayama N, Yasui E, Mizukami M, Miyashita M, Nagumo S. Org. Lett. 2014; 16: 2794
    • 4f Fuwa H, Muto T, Sekine H, Sasaki M. Chem. Eur. J. 2014; 20: 1848
    • 4g Lei H, Yan J, Yu J, Liu Y, Wang Z, Xu Z, Ye T. Angew. Chem. Int. Ed. 2014; 53: 6533
    • 4h Huwyler N, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 13066
    • 4i Jeker OF, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3474
  • 5 Zhu L, Liu Y, Ma R, Tong R. Angew. Chem. Int. Ed. 2015, 54: 627
  • 6 Rodríguez AD, Soto JJ, Pina IC. J. Nat. Prod. 1995; 58: 1209
  • 7 Marshall JA, Griot CA, Chobanian HR, Myers WH. Org. Lett. 2010; 12: 4328
    • 8a Li J, Cisar JS, Zhou C.-Y, Vera B, Williams H, Rodríguez AD, Cravatt BF, Romo D. Nature Chem. 2013; 5: 510
    • 8b Rodríguez AD, Piña IC, Acosta AL, Ramírez C, Soto JJ. J. Org. Chem. 2001; 66: 648

    • For selected total syntheses of other less complex cembranolides, see:
    • 8c Tius MA. Chem. Rev. 1988; 88: 719
    • 8d Marshall JA, Crooks SL, DeHoff BS. J. Org. Chem. 1988; 53: 1616
    • 8e Taber DF, Song Y. J. Org. Chem. 1997; 62: 6603
  • 9 Rodríguez AD, Soto JJ, Barnes CL. J. Org. Chem. 2000; 65: 7700
    • 10a Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 2521
    • 10b Ferrie L, Reymond S, Capdevielle P, Cossy J. Org. Lett. 2007; 9: 2461
    • 11a Achmatowicz Jr. O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973

    • For leading reviews on Achmatowicz rearrangement, see:
    • 11b Lipshutz BH. Chem. Rev. 1986; 86: 795
    • 11c Harris JM, Li M, Scott JG, O’Doherty GA. Strategy and Tactics in Organic Synthesis . Harmata M. Elsevier; London: 2004: 221
    • 12a Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
    • 12b For the origin of the high diastereoselectivity in this type reduction, see: Um JM, Houk KN, Phillips AJ. Org. Lett. 2008; 10: 3769
  • 13 Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y. J. Am. Chem. Soc. 1989; 111: 4392
  • 14 For a leading review, see: Seco JM, Quiñoá E, Riguera R. Chem. Rev. 2004; 104: 17
  • 15 Abiko A, Liu J.-F, Masamune S. J. Am. Chem. Soc. 1997; 119: 2586
    • 16a Johnson WS, Werthemann L, Bartlett WR, Brocksom TJ, Li T.-T, Faulkner DJ, Petersen MR. J. Am. Chem. Soc. 1970; 92: 741

    • For selected reviews, see:
    • 16b Fernandes RA, Chowdhury AK, Kattanguru P. Eur. J. Org. Chem. 2014; 2833
    • 16c Castro AM. M. Chem. Rev. 2004; 104: 2939
    • 17a Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB. J. Am. Chem. Soc. 1988; 110: 1968
    • 17b Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483

      For recent reviews on RCM, see:
    • 18a Grubbs RH. Tetrahedron 2004; 60: 7117
    • 18b Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
    • 19a Still WC, Galynker I. Tetrahedron 1981; 37: 3981
    • 19b Neeland E, Ounsworth JP, Sims RJ, Weiler L. Tetrahedron Lett. 1987; 28: 35
    • 19c Fukazawa Y, Usui S, Uchio Y. Tetrahedron Lett. 1986; 27: 1825