Synlett 2015; 26(16): 2189-2193
DOI: 10.1055/s-0034-1381186
synpacts
© Georg Thieme Verlag Stuttgart · New York

Azomethine Ylide: An Isolable 1,5-Dipole for Affecting [5+2] Cy­cloaddition Reactions

Eun Jeong Yoo*
Department of Chemistry, Kangwon National University, Chuncheon, 200-701, Republic of Korea   Email: ejyoo@kangwon.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 29 April 2015

Accepted after revision: 12 June 2015

Publication Date:
22 July 2015 (online)

Abstract

It was recently found that 1-sulfonyl-1,2,3-triazole can act as a 1,3-dipole in the presence of rhodium(II), leading to emergence of diverse rhodium(II)-catalyzed [3+n] cycloaddition reactions using 1-sulfonyl-1,2,3-triazole. Herein, we highlight development of another dipole, azomethine ylide, which was prepared from 1-sulfonyl-1,2,3-triazole with amide and pyridine derivatives, respectively. Notably, the rhodium(II)-catalyzed reaction of 1-sulfonyl-1,2,3-triazole with pyridines resulted in generation of uniquely isolable azomethine ylide. This azomethine ylide is the first example of an isolable 1,5-dipole that could be cyclized with 2π-dipolarophiles. The new 1,5-dipole provides an avenue for the development of new organic syntheses.

1 Introduction

2 Reactions of 1-Sulfonyl-1,2,3-triazole with Aldehyde

3 1-Sulfonyl-1,2,3-triazole as a Precursor of Azomethine Ylide

4 Generation of Free Azomethine Ylide

5 Outlook

 
  • References

    • 1a Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 1d The Chemistry of Heterocyclic Compounds . Vol. 25. Taylor EC, Saxton JE. Wiley-Interscience; New York: 1983
    • 2a Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 2b Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 2c 1,3-Dipolar Cycloaddition Chemistry . Vols. 1 & 2. Padwa A. Wiley; New York: 1984

    • For examples of multicomponent cycloaddition reactions, see:
    • 2d Galliford CV, Scheidt KA. J. Org. Chem. 2007; 72: 1181
    • 2e DeAngelis A, Taylor MT, Fox JM. J. Am. Chem. Soc. 2009; 131: 1101
  • 3 For a review, see: Padwa A, Hornbuckle SF. Chem. Rev. 1991; 91: 263

    • For recent reviews, see:
    • 4a Najera C, Sansano JM. Top. Heterocycl. Chem. 2008; 12: 117
    • 4b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 4c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 5a Padwa A, Dean DC, Zhi L. J. Am. Chem. Soc. 1992; 114: 593
    • 5b Padwa A, Dean DC, Hertzog DL, Nadler WR, Zhi L. Tetrahedron 1992; 48: 7565
    • 5c Padwa A, Dean DC, Zhi L. J. Am. Chem. Soc. 1989; 111: 6451
    • 5d Bartnik R, Mloston G. Tetrahedron 1984; 40: 2569
    • 6a Dopp D, Nour-el-Din AM. Tetrahedron Lett. 1978; 19: 1463
    • 6b Padwa A, Dean D, Oine T. J. Am. Chem. Soc. 1975; 97: 2822
    • 6c Dowd P, Kang K. J. Chem. Soc., Chem. Commun. 1974; 258
    • 6d Schmidt G, Stracke H.-U, Winterfeldt E. Chem. Ber. 1970; 103: 3196
    • 6e Achenson RM, Bailey AS, Selby IA. J. Chem. Soc., Chem. Commun. 1966; 835
    • 7a Vedejs E, Grissom JW. J. Org. Chem. 1988; 53: 1882
    • 7b Vedejs E, Grissom JW. J. Org. Chem. 1988; 53: 1876
    • 7c Vedejs E, Grissom JW. J. Am. Chem. Soc. 1986; 108: 6433
  • 8 Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. Doyle MP, Mckervey MA, Yu T. Wiley; New York: 1998
    • 9a Yoo EJ, Ahlquist M, Kim SH, Bae I, Fokin VV, Sharpless KB, Chang S. Angew. Chem. Int. Ed. 2007; 46: 1730
    • 9b Raushel J, Fokin VV. Org. Lett. 2010; 12: 4952

      For earlier reports on the ring-opening reactions of 1-sulfonyl-1,2,3-triazoles, see:
    • 10a Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 10b Miura T, Yanauchi M, Murakami M. Chem. Commun. 2009; 1470
    • 11a Yang J.-M, Zhu C.-Z, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
    • 11b Kim C.-E, Park S, Eom D, Seo B, Lee PH. Org. Lett. 2014; 16: 1900
    • 11c Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6802
    • 11d Parr BT, Green SA, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 4716
    • 11e Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
    • 11f Zibinsky M, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
    • 11g Miura T, Hiraga K, Biyajima T, Nakamura T, Murakami M. Org. Lett. 2013; 15: 3298
    • 11h Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
    • 11i Shi Y, Gevorgyan V. Org. Lett. 2013; 15: 5394
    • 11j Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746

    • For a review, see:
    • 11k Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
  • 12 Zibinsky M, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
  • 13 Miura T, Tanaka T, Hiraga K, Stewart SG, Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 14a Jung DJ, Jeon HJ, Kim JH, Kim Y, Lee S.-g. Org. Lett. 2014; 16: 2208
    • 14b Miura T, Funakoshi Y, Tanaka T, Murakami M. Org. Lett. 2014; 16: 2760
  • 15 Lee DJ, Shin J, Yoo EJ. Chem. Commun. 2014; 50: 6620
  • 16 Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
  • 17 Song G, Chen D, Su Y, Han K, Pan C.-L, Jia A, Li X. Angew. Chem. Int. Ed. 2011; 50: 7791