Synlett 2016; 27(02): 181-189
DOI: 10.1055/s-0035-1560700
synpacts
© Georg Thieme Verlag Stuttgart · New York

Thiohydroximic Acids: Versatile Reagents for Organic Synthesis

Bérénice C. Lemercier
Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA   Email: jgpierce@ncsu.edu
,
Joshua G. Pierce*
Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA   Email: jgpierce@ncsu.edu
› Author Affiliations
Further Information

Publication History

Received: 25 August 2015

Accepted after revision: 09 September 2015

Publication Date:
22 October 2015 (online)

Abstract

Thiohydroximic acids are a heteroatom-rich class of compounds that have long been used only as a means to study the biology of their glucosinolate subclass. However, due to their wide range of reactivity and surprising stability, they have recently emerged as versatile reagents for heterocycle synthesis. In this Account we highlight the current and potential uses of thiohydroximic acids as building blocks for synthesis, with a focus on recent developments from our group. Thiohydroximic acids have already proven to be useful reagents for thioimidate N-oxides, thiazoline, and oxathiazole synthesis, and many more applications will likely emerge as we continue to evaluate their properties.

1 Synthesis of Thiohydroximic Acids

2 Synthesis of Cyclic Thioimidate N-Oxides

3 Synthesis of Thiazolines

4 Synthesis of 5H-1,4,2-Oxathiazoles

5 Summary

 
  • References

    • 1a Walter W, Schaumann E. Synthesis 1971; 111
    • 1b Chimiak A, Przychodzen W, Rachon J. Heteroat. Chem. 2002; 13: 169
    • 2a Halkier BA, Gershenzon J. Annu. Rev. Plant Biol. 2006; 57: 303
    • 2b Agerbirk N, Olsen CE. Phytochemistry 2012; 77: 16
  • 3 Rollin P, Tatibouët A. C. R. Chim. 2011; 14: 194
  • 4 Benn MH. Can. J. Chem. 1963; 41: 2336
    • 5a Benn MH. Can. J. Chem. 1964; 42: 163
    • 5b Benn MH. Can. J. Chem. 1964; 42: 2393
    • 5c Benn MH. Can. J. Chem. 1965; 43: 1874
    • 5d Grundmann C, Frommeld H.-D. J. Org. Chem. 1966; 31: 157
    • 5e Benn MH. Can. J. Chem. 1967; 45: 1595
    • 5f Cobb SE, Morgan KF, Botting NP. Tetrahedron Lett. 2011; 52: 1605
    • 5g Vo QV, Trenerry C, Rochfort S, Wadeson J, Leyton C, Hughes A. Bioorg. Med. Chem. 2013; 21: 5945
    • 5h Lemercier BC, Pierce JG. Org. Lett. 2015; 17: 4542
    • 6a Benn MH, Ettlinger MG. J. Chem. Soc., Chem. Commun. 1965; 445
    • 6b Jensen SR, Kjaer A. Acta Chem. Scand. 1971; 25: 3891
    • 6c MacLeod AJ, Rossiter JT. J. Chem. Soc., Perkin Trans. 1 1983; 717
    • 6d Viaud MC, Rollin P. Tetrahedron Lett. 1990; 31: 1417
    • 6e Mavratzotis M, Dourtoglou V, Lorin C, Rollin P. Tetrahedron Lett. 1996; 37: 5699
    • 6f Keller TH, Yelland LJ, Benn MH. Can. J. Chem. 1984; 62: 437
    • 7a Cassel S, Casenave B, Déléris G, Latxague L, Rollin P. Tetrahedron 1998; 54: 8515
    • 7b Gueyrard D, Barillari J, Iori R, Palmieri S, Rollin P. Tetrahedron Lett. 2000; 41: 8307
    • 7c Leuck M, Kunz H. Carbohydr. Res. 1998; 312: 33
    • 7d Yamazoe S, Hasegawa K, Shigemori H. Biosci. Biotechnol. Biochem. 2009; 73: 785
    • 7e Gueyrard D, Iori R, Tatibouët A, Rollin P. Eur. J. Org. Chem. 2010; 3657
    • 7f Vo QV, Trenerry C, Rochfort S, Wadeson J, Leyton C, Hughes A. Bioorg. Med. Chem. 2014; 22: 856
  • 8 Cerniauskaite D, Rousseau J, Sackus A, Rollin P, Tatibouët A. Eur. J. Org. Chem. 2011; 2293
  • 9 Ettlinger MG, Lundeen AJ. J. Am. Chem. Soc. 1957; 79: 1764
  • 10 Lemercier BC, Pierce JG. J. Org. Chem. 2014; 79: 2321
  • 11 Hanhela PJ, Paul DB. Aust. J. Chem. 1989; 42: 1257
  • 12 Iori R, Barillari J, Gallienne E, Bilardo C, Tatibouët A, Rollin P. Tetrahedron Lett. 2008; 49: 292
    • 13a Becker DA. J. Am. Chem. Soc. 1996; 118: 905
    • 13b Villamena FA, Zweier JL. Antioxid. Redox Signaling 2004; 6: 619
    • 13c Han Y, Tuccio B, Lauricella R, Villamena FA. J. Org. Chem. 2008; 73: 7108
  • 14 Floyd RA, Kopke RD, Choi C.-H, Foster SB, Doblas S, Towner RA. Free Radicals Biol. Med. 2008; 45: 1361 ; and references cited therein
    • 16a Cicchi S, Marradi M, Vogel P, Goti A. J. Org. Chem. 2006; 71: 1614
    • 16b Li Y.-X, Shimada Y, Sato K, Kato A, Zhang W, Jia Y.-M, Fleet GW. J, Xiao M, Yu C.-Y. Org. Lett. 2015; 17: 716
    • 16c Tsou E.-L, Chen S.-Y, Yang M.-H, Wang S.-C, Rachel Cheng T.-R, Cheng W.-C. Bioorg. Med. Chem. 2008; 16: 10198
    • 16d Higo T, Ukegawa T, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2015; 54: 7367
  • 17 Voinov MA, Shevelev TG, Rybalova TV, Gatilov YV, Pervukhina NV, Burdukov AB, Grigor’ev IA. Organometallics 2007; 26: 1607
    • 18a Koumbis AE, Gallos JK. Curr. Org. Chem. 2003; 7: 585
    • 18b Stecko S, Pieczykolan M, Ulikowski A, Kabala K, Wolosewicz KW, Maciejko M, Grzeszczyk B, Jurczak M, Chmielewski M, Furman B. Curr. Org. Chem. 2014; 18: 1716
  • 19 Schleiss J, Cerniauskaite D, Gueyrard D, Iori R, Rollin P, Tatibouët A. Synlett 2010; 725
  • 20 Marquès S, Schuler M, Tatibouët A. Eur. J. Org. Chem. 2015; 2411
  • 21 Tamura O, Toyao A, Ishibashi H. Synlett 2002; 1344
  • 22 Schleiss J, Rollin P, Tatibouët A. Angew. Chem. Int. Ed. 2010; 49: 577
    • 23a Racine E, Bello C, Gerber-Lemaire S, Vogel P, Py S. J. Org. Chem. 2009; 74: 1768
    • 23b Lieou Kui E, Kanazawa A, Poisson J.-F, Py S. Org. Lett. 2014; 16: 4484
    • 23c Peng X, Tong BM. K, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1959
    • 24a Shymanska NV, An IH, Pierce JG. Angew. Chem. Int. Ed. 2014; 53: 5401
    • 24b Shi Y, Pierce JG. Org. Lett. 2015; 17: 968
    • 24c Shymanska NV, An IH, Guevara-Zuluaga S, Pierce JG. Bioorg. Med. Chem. Lett. 2015; 25: 4887
    • 24d Moazami Y, Pierce JG. Synthesis 2015; 47 DOI: 10.1055/s-0034-1378788
  • 25 Lemercier BC, Pierce JG. Org. Lett. 2014; 16: 2074
  • 26 Xu Z, Ye T. Thiazoline and Thiazole and their Derivatives. In Heterocycles in Natural Product Synthesis. Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011
    • 27a Helmchen G, Krotz A, Ganz K.-T, Hansen D. Synlett 1991; 257
    • 27b Abrunhosa I, Gulea M, Levillain J, Masson S. Tetrahedron: Asymmetry 2001; 12: 2851
    • 27c Molina P, Tárraga A, Curiel D, Bautista D. Tetrahedron: Asymmetry 2002; 13: 1621
    • 27d Du DM, Fu B, Xia Q. Synthesis 2004; 221
  • 28 Gaumont A.-C, Guela M, Levillain J. Chem. Rev. 2009; 109: 1371
    • 29a Bergmeier SC. Tetrahedron 2000; 56: 2561
    • 29b Mercey G, Reboul V, Gulea M, Levillain J, Gaumont A.-C. Eur. J. Org. Chem. 2012; 5423
    • 29c Souto JA, Vaz E, Lepore I, Pöppler A.-C, Franci G, Alvarez R, Altucci L, de Lera ÁR. J. Med. Chem. 2010; 53: 4654
    • 29d Fiset D, Charette AB. RSC Adv. 2012; 2: 5502
  • 30 For copper-catalyzed amination of alkenes from activated oximes via SET, see: Koganemaru Y, Kitamura M, Narasaka K. Chem. Lett. 2002; 784

    • For copper-catalyzed amination of alkenes from activated oximes via copper(III), see:
    • 31a Liu S, Yu Y, Liebeskind LS. Org. Lett. 2007; 9: 1947
    • 31b John A, Nicholas KM. Organometallics 2012; 31: 7914
  • 32 For evidence of cis-aminocupration, see: Paderes MC, Belding L, Fanovic B, Dudding T, Keister JB, Chemler SR. Chem. Eur. J. 2012; 18: 1711 ; and references cited therein
  • 33 Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
    • 34a Kitamura M, Narasaka K. Bull. Chem. Soc. Jpn. 2008; 81: 539
    • 34b Zard S. Synlett 1996; 1148
  • 35 Guindo Y, Guérin B, Landry SR. Org. Lett. 2001; 3: 2293
  • 36 Chi Y-J, Yu H-T. Comput. Theor. Chem. 2013; 1005: 75
  • 37 Praly J.-P, Boyé S, Joseph B, Rollin P. Tetrahedron Lett. 1993; 34: 3419
    • 38a Praly J.-P, Faure R, Joseph B, Kiss L, Rollin P. Tetrahedron 1994; 50: 6559
    • 38b Somsak L, Nagy V, Vidal V, Czifrak K, Berzsenyi E, Praly J.-P. Bioorg. Med. Chem. Lett. 2008; 18: 5680
    • 38c Nagy V, Benltifa M, Vidal S, Berzsényi E, Teilhet C, Czifrák K, Batta G, Docsa T, Gergely P, Somsák L, Praly J.-P. Bioorg. Med. Chem. 2009; 17: 5696
    • 38d Somsak L, Bokor E, Czibere B, Czifrak K, Koppany C, Kulcsar L, Kun S, Szilagyi E, Toth M, Docsa T, Gergely P. Carbohydr. Res. 2014; 399: 38
  • 39 Praly JP, Vidal S. Mini-Rev. Med. Chem. 2010; 10: 1102
  • 40 Argyropoulos NG In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008: 105-144
  • 41 Cooper NJ In Comprehensive Organic Functional Group Transformations . Vol. 2. Katritzky AR, Taylor RJ. K. Elsevier; Amsterdam: 2005: 355-396
  • 42 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 43a Burkett BA, Kane-Barber JM, O’Reilly RJ, Shi L. Tetrahedron Lett. 2007; 48: 5355
    • 43b Burkett BA, Fu P, Hewitt RJ, Ng SL, Toh JD. W. Eur. J. Org. Chem. 2014; 1053
    • 43c Lim YW, Hewitt RJ, Burkett BA. Eur. J. Org. Chem. 2015; 4840
  • 44 Zhang H.-Z, Kasibhatla S, Kuemmerle J, Kemnitzer W, Ollis-Mason K, Qiu L, Crogan-Grundy C, Tseng B, Drewe J, Cai SX. J. Med. Chem. 2005; 48: 5215
  • 45 For review on Csp3 oxidation by iminoxyl radicals, see: Chiba S, Chen H. Org. Biomol. Chem. 2014; 12: 4051
  • 46 DDQ has been shown to oxidize activated C–H bonds α to sulfur and create a sulfur-stabilized electrophile that can be trapped by a nucleophile: Cui Y, Floreancig PE. Org. Lett. 2012; 14: 1720
    • 47a Luedtke AE, Timberlake JW. J. Org. Chem. 1985; 50: 268
    • 47b Groninger KS, Leisung M, Giese B. J. Org. Chem. 1988; 53: 4364