Synlett 2016; 27(15): 2178-2182
DOI: 10.1055/s-0035-1562489
synpacts
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Organocatalytic Intramolecular Morita–Baylis–Hillman Reaction of Some Unusual Substrates

Bishnupada Satpathi
Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
,
S. S. V. Ramasastry*
Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manuali PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 04 May 2016

Accepted after revision: 20 May 2016

Publication Date:
22 June 2016 (online)


Abstract

The hypothesis and rationale behind our recent contribution towards the development of an enantioselective organocatalytic intramolecular Morita–Baylis–Hillman (IMBH) reaction, leading to the synthesis of an array of cyclopentannulated arenes and heteroarenes, is discussed. The latest advancement has addressed some of the shortcomings of the MBH reaction. In addition, it is believed that this study paves the way for the consideration of new possibilities in MBH chemistry.

 
  • References

    • 1a Morita K, Suzuki Z, Hirose H. Bull. Chem. Soc. Jpn. 1968; 41: 2815
    • 1b Baylis AB, Hillman ME. D. Ger. Patent 2155113, 1972 ; Chem. Abstr. 1972, 77, 34174q
    • 1c Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 1d Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
    • 1e Singh V, Batra S. Tetrahedron 2008; 64: 4511
    • 1f Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
    • 1g Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
    • 1h Wei Y, Shi M. Acc. Chem. Res. 2010; 43: 1005
    • 1i Mansilla J, Sa JM. Molecules 2010; 15: 709
    • 1j Basavaiah D, Veeraraghavaiah G. Chem. Soc. Rev. 2012; 41: 68
    • 1k Wei Y, Shi M. Chem. Rev. 2013; 113: 6659

      For some selected articles, see:
    • 2a Trost BM, Machacek MR, Tsui HC. J. Am. Chem. Soc. 2005; 127: 7014
    • 2b Lee SI, Hwang GS, Shin SC, Lee TG, Jo RH, Ryu DH. Org. Lett. 2007; 9: 5087
    • 2c Webber P, Krische MJ. J. Org. Chem. 2008; 73: 9379
    • 2d Kurasaki H, Okamoto I, Morita N, Tamura O. Org. Lett. 2009; 11: 1179
    • 2e Hanessian S, Boyer N, Reddy GJ, Deschênes-Simard B. Org. Lett. 2009; 11: 4640
    • 2f Kumar T, Mobin SM, Namboothiri IN. N. Tetrahedron 2013; 69: 4964
    • 2g Bhowmik S, Batra S. Eur. J. Org. Chem. 2013; 7145
  • 3 Roth F, Gygax P, Frater G. Tetrahedron Lett. 1992; 33: 1045
    • 4a Bharadwaj KC. RSC Adv. 2015; 5: 75923
    • 4b Basavaiah D, Reddy GC. ARKIVOC 2016; (ii): 172
    • 5a Black GP, Dinon F, Fratucello S, Murphy PJ, Nielsen M, Williams HL. Tetrahedron Lett. 1997; 38: 8561
    • 5b Richards EL, Murphy PJ, Dinion F, Fratucello S, Brown PM, Gelbrich T, Hursthouse MB. Tetrahedron 2001; 57: 7771
    • 5c Keck GE, Welch DS. Org. Lett. 2002; 4: 3687
    • 5d Jellerichs BG, Kong J.-R, Krische MJ. J. Am. Chem. Soc. 2003; 125: 7758
    • 5e Chen S.-H, Hong B.-C, Sua C.-F, Sarsharb S. Tetrahedron Lett. 2005; 46: 8899
    • 5f Krafft ME, Haxell TF. N. J. Am. Chem. Soc. 2005; 127: 10168
    • 5g Krafft ME, Seibert KA, Haxell TF. N, Hirosawa C. Chem. Commun. 2005; 5772
    • 5h Krafft ME, Wright JA. Chem. Commun. 2006; 2977
    • 5i Krafft ME, Seibert KA. Synlett 2006; 3334
    • 5j Teng W.-D, Huang R, Kwong CK.-W, Shi M, Toy PH. J. Org. Chem. 2006; 71: 368
    • 5k Kwong CK.-W, Huang R, Zhang M, Shi M, Toy PH. Chem. Eur. J. 2007; 13: 2369
    • 5l Seidel F, Gladysz JA. Synlett 2007; 986
    • 5m Seidel FO, Gladysz JA. Adv. Synth. Catal. 2008; 350: 2443
    • 5n Yuan K, Song H.-L, Hua Y, Fang J.-F, Wu X.-Y. Tetrahedron: Asymmetry 2010; 21: 903
    • 5o Krafft ME, Seibert KA, Haxell TF. N. Synlett 2010; 2583
    • 5p Cran JW, Krafft ME, Seibert KA, Haxell TF. N, Wright JA, Hirosawa C, Abboud KA. Tetrahedron 2011; 67: 9922
    • 5q Akagawa K, Sakamoto S, Kudo K. Synlett 2011; 817
    • 5r Selig PS, Miller SJ. Tetrahedron Lett. 2011; 52: 2148
    • 5s Ressault B, Jaunet A, Geoffroy P, Goudedranche S, Miesch M. Org. Lett. 2012; 14: 366
    • 5t Wang Y, Jaunet A, Geoffroy P, Miesch M. Org. Lett. 2013; 15: 6198
    • 6a Srikrishna A, Kumar PR, Ramasastry SS. V. Tetrahedron Lett. 2004; 45: 383
    • 6b Srikrishna A, Ramasastry SS. V. Tetrahedron Lett. 2005; 46: 7373
    • 6c Srikrishna A, Ramasastry SS. V. Tetrahedron Lett. 2006; 47: 335
    • 6d Heasley B. Eur. J. Org. Chem. 2009; 1477
    • 6e Heasley B. Curr. Org. Chem. 2014; 18: 641
    • 7a Hudlicky T, Price JD. Chem. Rev. 1989; 89: 1467
    • 7b Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 7c Nair V, Babu BP, Vellalath S, Varghese V, Raveendran AE, Suresh E. Org. Lett. 2009; 11: 2507
    • 7d Chiang P.-C, Rommel M, Bode JW. J. Am. Chem. Soc. 2009; 131: 8714
    • 7e Kaeobamrung J, Bode JW. Org. Lett. 2009; 11: 677
    • 7f Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 1678
    • 7g Liu G, Shirley ME, Van KN, McFarlin RL, Romo D. Nat. Chem. 2013; 5: 1049
    • 7h Parr BT, Davies HM. L. Nat. Commun. 2014; 5: 1
    • 7i Zou L.-H, Philipps AR, Raabe G, Enders D. Chem. Eur. J. 2015; 21: 1004
    • 8a Basavaiah D, Kumaragurubaran N, Sharada DS. Tetrahedron Lett. 2001; 42: 85
    • 8b Basavaiah D, Sharada DS, Kumaragurubaran N, Reddy RM. J. Org. Chem. 2002; 67: 7135
    • 9a You J, Xu J, Verkade JG. Angew. Chem. Int. Ed. 2003; 42: 5054
    • 9b Pigge FC, Dhanya R, Hoefgen ER. Angew. Chem. Int. Ed. 2007; 46: 2887
  • 10 Satpathi B, Ramasastry SS. V. Angew. Chem. Int. Ed. 2016; 55: 1777
  • 11 Dhiman S, Ramasastry SS. V. Indian J. Chem. Sect. A 2013; 52: 1103
    • 12a Shi M, Ma G.-N, Gao J. J. Org. Chem. 2007; 72: 9779
    • 12b Fang Y.-Q, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 5660
    • 12c Meng X, Huang Y, Chen R. Chem. Eur. J. 2008; 14: 6852
    • 12d Zhong F, Wang Y, Han X, Huang K.-W, Lu Y. Org. Lett. 2011; 13: 1310
    • 12e Song H.-L, Yuan K, Wu X.-Y. Chem. Commun. 2011; 47: 1012
    • 12f Gong J.-J, Li T.-Z, Pan K, Wu X.-Y. Chem. Commun. 2011; 47: 1491
    • 12g Fang Y.-Q, Tadross PM, Jacobsen EN. J. Am. Chem. Soc. 2014; 136: 17966
    • 12h Zhang X, Ma P, Zhang D, Lei Y, Zhang S, Jiang R, Chen W. Org. Biomol. Chem. 2014; 12: 2423
    • 12i Zhao X, Li T.-Z, Qian J.-Y, Sha F, Wu X.-Y. Org. Biomol. Chem. 2014; 12: 8072
    • 12j Dong Z, Yan C, Gao Y, Dong C, Qiu G, Zhou H.-B. Adv. Synth. Catal. 2015; 357: 2132
    • 12k Yang W, Yuan K, Song H, Sha F, Wu X. Chin. J. Chem. 2015; 33: 1111
  • 13 Suzuki T, Ishizaka Y, Ghozati K, Zhou D.-Y, Asano K, Sasai H. Synthesis 2013; 2134
    • 14a Berkessel A, Adrio JA, Hütten-Hain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
    • 14b Shuklov IA, Dubrovin NV, Börner A. Synthesis 2007; 2925
    • 14c Sugiishi T, Matsugi M, Hamamoto H, Amii H. RSC Adv. 2015; 5: 17269
    • 14d Motiwala HF, Vekariya RH, Aubé J. Org. Lett. 2015; 17: 5484
    • 14e Tian Y, Xu X, Zhang L, Qu J. Org. Lett. 2016; 18: 268