Synlett 2017; 28(03): 280-288
DOI: 10.1055/s-0036-1588128
synpacts
© Georg Thieme Verlag Stuttgart · New York

Tri(1-adamantyl)phosphine: Exceptional Catalytic Effects Enabled by the Synergy of Chemical Stability, Donicity, and Polarizability

Brad P. Carrow*
Department of Chemistry, Princeton University, Princeton, NJ 08544, USA   Email: bcarrow@princeton.edu
,
Liye Chen
Department of Chemistry, Princeton University, Princeton, NJ 08544, USA   Email: bcarrow@princeton.edu
› Author Affiliations
Further Information

Publication History

Received: 02 November 2016

Accepted after revision: 01 December 2016

Publication Date:
10 January 2017 (online)

Abstract

Tri(1-adamantyl)phosphine, a simple yet long-absent homoleptic phosphine, has finally been prepared. The simplicity of this compound beguiles its exceptional properties. The electron-releasing character eclipses all other alkylphosphines. The phosphine geometry and overall size are also more compact than anticipated, which may occur as a result of dispersion forces. We believe the donicity, marked resistance towards cyclometallation or P−C bond scission, and also substantial polarizability engendered by the three diamondoid fragments together account for the phenomenal performance of Pd-PAd3 catalysts during Suzuki–Miyaura coupling reactions. A correlation analysis is also described that provides support for polarizability as a potentially general influence on the properties of tertiary phosphines.

1 Introduction

2 Synthesis of Tri(1-adamantyl)phosphine

3 Reactions of Tri(1-adamantyl)phosphine Palladium Complexes

4 Electronic and Steric Properties of Tri(1-adamantyl)phosphine

5 Conclusion

 
  • References

    • 2a Ziegler CB, Heck RF. J. Org. Chem. 1978; 43: 2941
    • 2b Nishiyama M, Yamamoto T, Koie Y. Tetrahedron Lett. 1998; 39: 617
    • 2c Littke AF, Fu GC. Angew. Chem. Int. Ed. 1998; 37: 3387
    • 2d Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM. J. Org. Chem. 1999; 64: 5575
    • 2e Mann G, Incarvito C, Rheingold AL, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 3224
    • 2f Kawatsura M, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 1473
    • 2g Wolfe JP, Buchwald SL. Angew. Chem. Int. Ed. 1999; 38: 2413
    • 2h Shelby Q, Kataoka N, Mann G, Hartwig J. J. Am. Chem. Soc. 2000; 122: 10718
    • 2i Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
    • 2j Stambuli JP, Stauffer SR, Shaughnessy KH, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 2677
    • 2k Zapf A, Ehrentraut A, Beller M. Angew. Chem. Int. Ed. 2000; 39: 4153
    • 2l Sather AC, Lee HG, De La Rosa VY, Yang Y, Müller P, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 13433
    • 2m Handa S, Andersson MP, Gallou F, Reilly J, Lipshutz BH. Angew. Chem. Int. Ed. 2016; 55: 4914
    • 3a Böhm VP. W, Gstöttmayr CW. K, Weskamp T, Herrmann WA. J. Organomet. Chem. 2000; 595: 186
    • 3b Viciu MS, Kissling RM, Stevens ED, Nolan SP. Org. Lett. 2002; 4: 2229
  • 4 Hartwig JF. Organotransition Metal Chemistry – From Bonding to Catalysis. University Science Books;; 2010: 261-266
  • 6 Tatsumi K, Hoffmann R, Yamamoto A, Stille JK. Bull. Chem. Soc. Jpn. 1981; 54: 1857
  • 7 Hartwig JF. Inorg. Chem. 2007; 46: 1936
  • 8 Crabtree RH. Chem. Rev. 2015; 115: 127
  • 9 Ge S, Green RA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 1617
    • 10a Kong KC, Cheng CH. J. Am. Chem. Soc. 1991; 113: 6313
    • 10b Goodson FE, Wallow TI, Novak BM. J. Am. Chem. Soc. 1997; 119: 12441
    • 11a Yandulov DV, Tran NT. J. Am. Chem. Soc. 2007; 129: 1342
    • 11b Hartwig JF, Bergman RG, Andersen RA. J. Organomet. Chem. 1990; 394: 417
    • 11c Lin W, Wilson SR, Girolami GS. Inorg. Chem. 1994; 33: 2265
    • 11d Hirsekorn KF, Veige AS, Wolczanski PT. J. Am. Chem. Soc. 2006; 128: 2192
    • 12a Ryabov AD. Chem. Rev. 1990; 90: 403
    • 12b Albrecht M. Chem. Rev. 2010; 110: 576
  • 13 Louie J, Hartwig JF. Angew. Chem. Int. Ed. Engl. 1996; 35: 2359
    • 14a Rataboul F, Zapf A, Jackstell R, Harkal S, Riermeier T, Monsees A, Dingerdissen U, Beller M. Chem. Eur. J. 2004; 10: 2983
    • 14b Köllhofer A, Pullmann T, Plenio H. Angew. Chem. Int. Ed. 2003; 42: 1056
    • 14c Köllhofer A, Plenio H. Chem. Eur. J. 2003; 9: 1416
    • 14d Lundgren RJ, Sappong-Kumankumah A, Stradiotto M. Chem. Eur. J. 2010; 16: 1983
    • 15a Fleckenstein CA, Plenio H. Chem. Soc. Rev. 2010; 39: 694
    • 15b Agnew-Francis KA, Williams CM. Adv. Synth. Catal. 2016; 358: 675
    • 16a Böttcher H.-C, Mayer P. Z. Naturforsch., B 2014; 69: 1237
    • 16b Bennett MA, Milner DL. J. Am. Chem. Soc. 1969; 91: 6983
    • 16c Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683
  • 17 Hackett M, Whitesides GM. Organometallics 1987; 6: 403
  • 18 Goerlich JR, Fischer A, Jones PG, Schmutzler R. Z. Naturforsch., B 1994; 49: 801
  • 19 Brown J, Prabagar J, Cowley A. Synlett 2011; 2351
  • 20 Sasaki T, Nakanishi A, Ohno M. J. Org. Chem. 1982; 47: 3219
  • 21 Chen L, Ren P, Carrow BP. J. Am. Chem. Soc. 2016; 138: 6392
    • 22a Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 22b Ryabov AD. Synthesis 1985; 233
  • 23 Cyclometalation at an Ad substituent has been observed when a more favorable metallacycle is formed. See, for example: Endo K, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 8525
  • 24 Maier WF, Schleyer PV. R. J. Am. Chem. Soc. 1981; 103: 1891
  • 25 Farina V. Adv. Synth. Catal. 2004; 346: 1553
  • 26 Chan AL, Estrada J, Kefalidis CE, Lavallo V. Organometallics 2016; 35: 3257
    • 27a Giri R, Lam JK, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 686
    • 27b Peh G.-R, Kantchev EA. B, Er J.-C, Ying JY. Chem. Eur. J. 2010; 16: 4010
    • 28a Navarro O, Kelly RA, Nolan SP. J. Am. Chem. Soc. 2003; 125: 16194
    • 28b Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
    • 28c Li H, Johansson Seechurn CC. C, Colacot TJ. ACS Catal. 2012; 2: 1147
  • 29 For another catalyst system that effectively outcompetes protodeboronation, see: Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
  • 30 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
  • 31 Bedford RB, Cazin CS. J, Hazelwood SL. Angew. Chem. Int. Ed. 2002; 41: 4120
  • 32 de Vries J In Organometallics as Catalysts in the Fine Chemical Industry . Vol. 42. Beller M, Blaser H.-U. Springer; Berlin/Heidelberg: 2012: 1-34
    • 33a Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 33b Molander GA, Biolatto B. J. Org. Chem. 2003; 68: 4302

      For examples of very strongly donating phosphines with P–Sn or P–N bonds, see:
    • 34a Schumann H, Stelzer O, Niederreuther U, Rösch L. Chem. Ber. 1970; 103: 1383
    • 34b Wünsche MA, Mehlmann P, Witteler T, Buß F, Rathmann P, Dielmann F. Angew. Chem. Int. Ed. 2015; 54: 11857
    • 34c Buß F, Mehlmann P, Mück-Lichtenfeld C, Bergander K, Dielmann F. J. Am. Chem. Soc. 2016; 138: 1840
  • 35 IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.
  • 36 Calculated indirectly from the (L)Rh(CO)(acac) stretching ­frequency according to the relationship: TEP = 0.5716 × νCO(Rh)+938.47.
  • 37 Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
    • 38a Datt MS, Nair JJ, Otto S. J. Organomet. Chem. 2005; 690: 3422
    • 38b Clavier H, Nolan SP. Chem. Commun. 2010; 46: 841
    • 38c Tolman CA. Chem. Rev. 1977; 77: 313
  • 39 Charton M In Steric Effects in Drug Design . Springer; Berlin/Heidelberg: 1983: p 57-91
  • 40 Rosel S, Balestrieri C, Schreiner PR. Chem. Sci. 2016; in press ; doi: 10.1039/C6SC02727J
    • 41a Schmidbaur H, Brachthäuser B, Steigelmann O, Beruda H. Chem. Ber. 1992; 125: 2705
    • 41b Muir JA, Muir MM, Pulgar LB, Jones PG, Sheldrick GM. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1985; 41: 1174
    • 41c Angermaier K, Zeller E, Schmidbaur H. J. Organomet. Chem. 1994; 472: 371
    • 41d Tiekink E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989; 45: 1233
    • 41e King AS, Ferguson G, Britten JF, Valliant JF. Inorg. Chem. 2004; 43: 3507
    • 42a Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JE. P, Carlson RM. K, Fokin AA. Nature 2011; 477: 308
    • 42b Grimme S, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 12639
    • 42c Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JE. P, Carlson RM. K, Schreiner PR. J. Am. Chem. Soc. 2012; 134: 13641
    • 43a Ahlquist MS. G, Norrby P.-O. Angew. Chem. Int. Ed. 2011; 50: 11794
    • 43b Lyngvi E, Sanhueza IA, Schoenebeck F. Organometallics 2015; 34: 805
  • 44 Strem Chemicals Inc., catalogue no. 15-0935.