CC BY ND NC 4.0 · SynOpen 2017; 01(01): 0063-0067
DOI: 10.1055/s-0036-1588520
letter
Copyright with the author

Highly Efficient Construction of Sugar-Fused Spirochromanono Pyrrolidines/Pyrrolizidines/Thiolizidines via 1,3-Dipolar Cycloaddition of Azomethine Ylides

Sirisha Nallamalaa, Srikumar Mannem*b, Raghunathan Raghavachary*a
We thank the Council of Scientific and Industrial Research, New Delhi, India (Award Letter No: 09/115(0733)/2011-EMR-I) for financial support.
Further Information

Publication History

Received: 29 May 2017

Accepted after revision: 11 July 2017

Publication Date:
01 August 2017 (online)

Abstract

A variety of sugar-fused chromanono pyrrolidines/pyrrolizidines/thiolizidines have been synthesized by intermolecular 1,3-dipolar cycloaddition reaction of azomethine ylides (generated from glucose aldehyde and different secondary amino acids) with various 3-arylidene chroman-4-ones as dipolarophiles. The solvent effect on the 1,3-dipolar cycloaddition reaction is also studied.

Supporting Information

 
  • References and Notes

  • 1 Levy DE. Fügedi P. The Organic Chemistry of Sugars . Taylor & Francis/CRC Press; Boca Raton; 2005
    • 2a Danishefsky SJ. Allen JR. Angew. Chem. Int. Ed. 2000; 39: 836
    • 2b Allen JR. Harris CR. Danishefsky SJ. J. Am. Chem. Soc. 2001; 123: 1890
  • 3 Hosoya T. Takashiro E. Matsumoto T. Suzuki K. Tetrahedron Lett. 1994; 35: 4591
  • 4 Ferguson NM. Cummings DA. T. Cauchemez S. Fraser C. Riley S. Meeyai A. Iamsirithaworn S. Burke DS. Nature 2005; 437: 209
    • 5a Cipolla L. La Ferla B. Nicotra F. Curr. Top. Med. Chem. 2003; 3: 485
    • 5b Harris CM. Harris TM. J. Am. Chem. Soc. 1982; 104: 363
  • 6 Kim HO. Ahn SK. Alves AJ. Beach JW. Jeong LS. Choi BG. Roey PV. Schinazi RF. Chu CK. J. Med. Chem. 1992; 35: 1987
    • 8a Prasanna R. Purushothaman S. Raghunathan R. Tetrahedron Lett. 2010; 51: 4538
    • 8b Naga Siva RaoJ. Raghunathan R. Tetrahedron Lett. 2015; 56: 1539
    • 9a Sarotti AM. Spanevello RA. Suarez AG. Echeverria GA. Piro OE. Org. Lett. 2012; 14: 2556
    • 9b Karanjule NS. Shankar DM. Tarun S. Sushma GS. Vedavati GP. Dilip DD. J. Org. Chem. 2005; 70: 1356
    • 9c Bokor E. Sandor K. Tibor D. Gergely P. Laszlo S. Med. Chem. Lett. 2015; 12: 1215
    • 10a Emami S. Ghanbarimasir Z. Eur. J. Med. Chem. 2015; 93: 539
  • 11 Ashok D. Madhuri EV. L. Sarasija M. Sree Kanth S. Vijjulatha M. Malini DA. Sagurthi SR. RSC Adv. 2017; 7: 25710
  • 12 Mujahid M. Gonnade RG. Yogeeswari P. Sriram D. Muthukrishnan M. Bioorg. Med. Chem. Lett. 2013; 23: 1416
    • 13a Jorge AP. Horst H. De Souza E. Pizzolatti MG. Silva FR. M. B. Chem. Biol. Interact. 2004; 149: 89
    • 13b Matsuda H. Morikawa T. Yoshikawa M. Pure Appl. Chem. 2002; 74: 1301
  • 14 Tasdemir D. Kaiser M. Brun R. Yardley V. Schmidt TJ. Tosun F. Ruedi P. Antimicrob. Agents Chemother. 2006; 50: 1352
    • 15a Matthew PB. J. Med. Chem. 2015; 58: 525
    • 15b Huang T. Sun J. Wang Q. Gao J. Liu Y. Molecules 2015; 20: 16221
  • 16 Walsh J. Bell A. Curr. Pharm. Des. 2009; 15: 2970
    • 17a Gallos JK. Koumbis AE. Curr. Org. Chem. 2003; 7: 397
    • 17b Benltifa M. Vidal S. Gueyrard D. Goekjian PG. Msaddek M. Praly J.-P. Tetrahedron Lett. 2006; 47: 6143
    • 18a Rajesh R. Raghunathan R. Synlett 2013; 2107
    • 18b Kathiravan S. Raghunathan R. Synlett 2010; 952
    • 18c Jayashankaran J. Manian RD. R. S. Raghunathan R. Synthesis 2006; 1028
  • 19 Xavier NM. Rauter AP. Carbohydr. Res. 2008; 343: 1523
  • 20 Bennett P. Donnelly JA. Meaney DC. Boyle PO. J. Chem. Soc., Perkin Trans. 1 1972; 1554
  • 21 Experimental procedure and characterization data for cycloadduct 5b: A solution of O-benzyl tethered sugar aldehyde 3 (0.1 g, 0.31 mmol), sarcosine 2 (0.028 g, 0.346 mmol) and 3-arylidene chroman-4-one 1b (0.088 g, 0.31 mmol) was heated to reflux in anhydrous toluene for 8 h. The crude product was purified by column chromatography (hexane/EtOAc, 99:1) to give 5b as a pale-yellow liquid (0.11 g, 66%). IR (KBr): 1342, 1520, 1690 cm–1. 1H NMR (CDCl3, 300 MHz): δ = 1.49 (br s, 10 H), 2.40 (s, 3 H), 2.85 (t, J = 9.3 Hz, 1 H), 3.08 (dd, J = 3.6, 9.3 Hz, 1 H), 3.41 (dd, J = 3.6, 9.3 Hz, 1 H), 3.77 (s, 1 H), 3.93 (d, J = 12.3 Hz, 1 H), 4.27 (d, J = 12.3 Hz, 1 H), 5.09 (dd, J = 2.4, 5.4 Hz, 1 H), 5.14 (d, J = 2.4 Hz, 1 H), 5.91 (d, J = 5.4 Hz, 1 H), 6.69–8.07 (m, 8 H). 13C NMR (75 MHz): δ = 22.89, 22.91, 23.81, 35.94, 36.49, 39.27, 48.19, 57.51, 60.13, 64.48, 68.33, 81.31, 101.36, 104.74, 111.63, 116.50, 117.99, 120.59, 122.18, 122.77, 122.95, 127.30, 128.63, 129.44, 135.45, 146.06, 147.46, 157.43, 159.98, 192.08. MS (ESI); m/z = 519.1 [M++1]. Anal. Calcd for C29H30N2O7: C, 67.17; H, 5.83; N, 5.40; found: C, 67.24; H, 5.81; N, 5.32
  • 22 Karthikeyan K. Senthil KumarR. Muralidharan D. Perumal PT. Tetrahedron Lett. 2009; 50: 7175
  • 23 Experimental procedure and characterization data for cycloadduct 11b: A solution of O-benzyl tethered sugar aldehyde 3 (0.1 g, 0.31 mmol), thiazolidine-4-carboxylic acid 10 (0.042 g, 0.346 mmol) and 3-arylidene chroman-4-one 1b (0.088 g, 0.31 mmol) was heated to reflux in anhydrous toluene for 8 h. The crude product was purified by column chromatography (hexane/EtOAc, 98:2) to give 11b as a pale-yellow liquid (0.12 g, 67%). IR (KBr): 1684, 1551, 1352 cm–1. 1H NMR (CDCl3, 300 MHz): δ = 1.53 (br s, 10 H), 2.39 (dd, J = 5.1, 9.3 Hz, 1 H), 3.37 (dd, J = 5.1, 9.3 Hz, 1 H), 3.48 (d, J = 11.4 Hz, 1 H), 3.83 (s, 1 H), 4.05 (d, J = 3.6 Hz, 1 H), 4.11 (d, J = 11.4 Hz, 1 H), 4.23–4.28 (m, 1 H), 4.49 (d, J = 12 Hz, 1 H), 4.61 (d, J = 12 Hz, 1 H), 4.77 (dd, J = 2.4, 5.4 Hz, 1 H), 5.23 (d, J = 2.4 Hz, 1 H), 5.86 (d, J = 5.4 Hz, 1 H), 6.82–8.09 (m, 8 H). 13C NMR (75 MHz): δ = 23.57, 23.72, 24.69, 35.42, 37.26, 43.11, 44.10, 55.53, 58.68, 71.59, 71.69, 72.78, 82.74, 99.83, 104.32, 113.27, 117.78, 123.77, 125.90, 127.75, 128.21, 128.63, 129.65, 136.62, 136.98, 146.14, 153.34, 167.12, 194.70. MS (ESI); m/z = 563.3 [M++1]. Anal. Calcd for C30H30N2O7S: C, 64.04; H, 5.37; N, 4.98; found: C, 64.12; H, 5.41; N, 4.87