Synlett 2017; 28(14): 1821-1827
DOI: 10.1055/s-0036-1589009
letter
© Georg Thieme Verlag Stuttgart · New York

Poly(phosphoric acid) (PPA)-Promoted 5-exo-Cyclization of Iminium Ions Generated In Situ: A Facile Access to Functionalized Indene Derivatives

Yi-Fan Zhu
a   School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China   Email: fanxh@mail.lzjtu.cn
,
Xin-Le Geng
a   School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China   Email: fanxh@mail.lzjtu.cn
,
Yong-Hong Guan
a   School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China   Email: fanxh@mail.lzjtu.cn
,
Wei Teng
a   School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China   Email: fanxh@mail.lzjtu.cn
,
Xiaohui Fan*
a   School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. of China   Email: fanxh@mail.lzjtu.cn
b   Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, P. R. of China
c   YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650500, P. R. of China
› Author Affiliations
Supported by: National Natural Science Foundation of China (21162013), (21562030)
Supported by: Beijing National Laboratory for Molecular Sciences (20140133)
Further Information

Publication History

Received: 21 January 2017

Accepted after revision: 26 March 2017

Publication Date:
04 May 2017 (online)


Abstract

A metal-free Brønsted acid promoted two-component reaction between cinnamaldehydes and sulfonamides is described. This cascade process provides a simple and atom-economical alternative synthesis of a range of functionalized indenes from easily available starting materials. The resulting N-indenylsulfonamides were readily converted into the corresponding indenylenamines or indanones.

Supporting Information

 
  • References and Notes

    • 1a Maryanoff BE. Zhang H.-C. Cohen JH. Turchi IJ. Maryanoff CA. Chem. Rev. 2004; 104: 1431
    • 1b Royer J. Bonin M. Micouin L. Chem. Rev. 2004; 104: 2311
    • 1c Martin SF. Acc. Chem. Res. 2002; 35: 895
    • 1d Blumenkopf TA. Overman LE. Chem. Rev. 1986; 86: 857
    • 1e Speckamp WN. Moolenaar MJ. Tetrahedron 2000; 56: 3817
    • 2a Pictet A. Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
    • 2b Stöckigt J. Antonchick AP. Wu F. Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 2c Cox ED. Cook JM. Chem. Rev. 1995; 95: 1797
    • 2d Kobayashi S. Mori Y. Fossey JS. Salter MM. Chem. Rev. 2011; 111: 2626
    • 2e Nielsen TE. Diness F. Meldal M. Curr. Opin. Drug Discovery Dev. 2003; 6: 801
    • 2f Laine AE. Lood C. Koskinen AM. P. Molecules 2014; 19: 1544
    • 3a Yu X. Lu X. Adv. Synth. Catal. 2011; 353: 569
    • 3b Yu X. Lu X. Tetrahedron Lett. 2011; 52: 2076
    • 3c Li Y. Xu M.-H. Asian J. Org. Chem. 2013; 2: 50
    • 3d Zhou S.-L. Li J.-L. Dong L. Chen Y.-C. Org. Lett. 2011; 13: 5874
    • 3e Wang S.-G. Zhang W. You S.-L. Org. Lett. 2013; 15: 1488
    • 3f Chihab-Eddine A. Daїch A. Jilale A. Decroix B. Tetrahedron Lett. 2001; 42: 573
    • 3g Mecozzi T. Petrini M. Profeta R. Tetrahedron: Asymmetry 2003; 14: 1171
    • 4a Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2015; 32: 116
    • 4b Saikawa Y. Hashimoto K. Nakata M. Yoshihara M. Nagai K. Ida M. Komiya T. Nature 2004; 429: 363
    • 4c Dennler G. Scharber MC. Brabec CJ. Adv. Mater. (Weinheim, Ger.) 2009; 21: 1323
    • 4d Zeng X. Ilies L. Nakamura E. J. Am. Chem. Soc. 2011; 133: 17638
    • 4e Zargarian D. Coord. Chem. Rev. 2002; 233: 157

      For reviews and selected examples of indene syntheses, see:
    • 5a Gabriele B. Mancuso R. Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 5b Shi M. Lu J.-M. Wei Y. Shao L.-X. Acc. Chem. Res. 2012; 45: 641
    • 5c Guo L.-N. Duan X.-H. Liang Y.-M. Acc. Chem. Res. 2011; 44: 111
    • 5d Grandclaudon C. Michelet V. Toullec PY. Org. Lett. 2016; 18: 676
    • 5e Zhao J. Xu Z. Oniwa K. Asao N. Yamamoto Y. Jin T. Angew. Chem. Int. Ed. 2016; 55: 259
    • 5f Li Y. Zhang L. Zhang Z. Xu J. Pan Y. Xu C. Liu L. Li Z. Yu Z. Li H. Xu L. Adv. Synth. Catal. 2016; 358: 2148
    • 5g Yang C. Xu Z.-L. Shao H. Mou X.-Q. Wang J. Wang S.-H. Org. Lett. 2015; 17: 5288
    • 5h Adcock HV. Langer T. Davies PW. Chem. Eur. J. 2014; 20: 7262
    • 5i Huang X.-C. Yang X.-H. Song R.-J. Li J.-H. J. Org. Chem. 2014; 79: 1025
    • 5j Wang Y. Liao W. Huang G. Xia Y. Yu Z.-X. J. Org. Chem. 2014; 79: 5684
    • 5k Li H. Li W. Li W. He Z. Li Z. Angew. Chem. Int. Ed. 2011; 50: 2975
    • 5l Shi X.-Y. Li C.-J. Org. Lett. 2013; 15: 1476
    • 5m Liu C.-R. Yang F.-L. Jin Y.-Z. Ma XT. Cheng D.-J. Li N. Tian S.-K. Org. Lett. 2010; 12: 3832
    • 5n Bu X. Hong J. Zhou X. Adv. Synth. Catal. 2011; 353: 2111
  • 6 Kuninobu Y. Kawata A. Takai K. J. Am. Chem. Soc. 2005; 127: 13498
    • 7a Yu H. Kim IJ. Folk JE. Tian X. Rothman RB. Baumann MH. Dersch CM. Flippen-Anderson JL. Parrish D. Jacobson AE. Rice KC. J. Med. Chem. 2004; 47: 2624
    • 7b Ahn JH. Shin MS. Jung SH. Kim JA. Kim HM. Kim SH. Kang SK. Kim KR. Rhee SD. Park SD. Lee JM. Lee JH. Cheon HG. Kim SS. Bioorg. Med. Chem. Lett. 2007; 17: 5239
    • 8a Liu C.-C. Korivi RP. Cheng C.-H. Chem. Eur. J. 2008; 14: 9503
    • 8b Sun Z.-M. Chen S.-P. Zhao P. Chem. Eur. J. 2010; 16: 2619
    • 8c Tran DN. Cramer N. Angew. Chem. Int. Ed. 2011; 50: 11098
    • 8d Zhao P. Wang F. Han K. Li X. Org. Lett. 2012; 14: 5506
    • 8e Jin X. Yang X. Yang Y. Wang C. Org. Chem. Front. 2016; 3: 268
  • 9 Wang S. Zhu Y. Wang Y. Lu P. Org. Lett. 2009; 11: 2615
  • 10 Fan X. Lv H. Guan Y.-H. Zhu H.-B. Cui X.-M. Guo K. Chem. Commun. (Cambridge) 2014; 50: 4119
    • 11a Fan X. Fu L.-A. Li N. Lv H. Cui X.-M. Qi Y. Org. Biomol. Chem. 2013; 11: 2147
    • 11b Fan X. Cui X.-M. Guan Y.-H. Fu L.-A. Lv H. Guo K. Zhu H.-B. Eur. J. Org. Chem. 2014; 498
    • 11c Fan X. Guo K. Guan Y.-HFu L.-A. Cui X.-M. Lv H. Zhu H.-B. Tetrahedron Lett. 2014; 55: 1068
    • 11d Fan X. Zhu H.-B. Lv H. Guo K. Guan Y.-H. Cui X.-M. An B. Pu Y.-L. Appl. Organomet. Chem. 2015; 29: 588
    • 11e Chen L. Teng W. Geng X.-L. Zhu Y.-F. Guan Y.-H. Fan X. Appl. Organomet. Chem. 2017; DOI: 10.1002/aoc.3863.
  • 12 N -(1H-Inden-1-yl)benzenesulfonamides 3ap; General Procedure TsNH2 (0.24 mmol) and PPA (20 mol%) were added to a stirred solution of aldehyde 1 (0.20 mmol) in toluene (2 mL), and the resulting mixture was stirred at 40–80 °C until the aldehyde was completely consumed (TLC). The reaction was then quenched by addition of sat. aq NaHCO3 (3 mL), and the mixture was extracted with EtOAc (3 × 5 mL). The organic layers were combined, washed with brine, dried (Mg2SO4), and filtered. The solvent was removed in vacuo, and the residue was purified by column chromatography [silica gel, PE–EtOAc (10:1)]. 4-Methyl-N-(2-methyl-1H-inden-1-yl)benzenesulfonamide (3a) White solid; yield: 55 mg (91%); mp 130–132 °C. 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 8.2 Hz, 2 H), 7.37–7.33 (m, 2 H), 7.18–7.16 (m, 2 H), 7.07 (m, 1 H), 6.97 (m, 1 H), 6.32 (s, 1 H), 4.70 (d, J = 9.5 Hz, 1 H), 4.54 (d, J = 9.5 Hz, 1 H), 2.47 (s, 3 H), 1.89 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.9, 143.5, 143.3, 143.1, 138.4, 129.7, 128.3, 127.7, 127.1, 124.8, 123.2, 120.2, 62.3, 21.5, 13.7. HRMS (ESI): m/z [M + NH4]+ calcd for C17H21N2O2S: 317.1318; found: 317.1315. N-(2,3-Dimethyl-1H-inden-1-yl)-4-methylbenzenesulfonamide (3l) White solid; yield: 50 mg (80%); mp 175–176 °C. 1H NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.2 Hz, 2 H), 7.38 (d, J = 8.0 Hz, 2 H), 7.26–7.20 (m, 1 H), 7.08 (d, J = 7.4 Hz, 1 H), 7.00 (t, J = 7.4 Hz, 1 H), 6.77 (d, J = 7.3 Hz, 1 H), 4.69 (d, J = 9.2 Hz, 1 H), 4.44 (d, J = 9.2 Hz, 1 H), 2.48 (s, 3 H), 1.94 (s, 3 H), 1.81 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.2, 143.5, 142.8, 138.7, 137.9, 134.0, 129.8, 128.3, 127.3, 125.0, 123.0, 118.3, 62.4, 21.6, 11.1, 10.3. HRMS (ESI): m/z [M + Na]+ calcd for C18H19NNaO2S : 336.1029; found: 336.1035.
  • 13 CCDC 965333 contains the supplementary crystallographic data for 3h. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Knowles HS. Parsons AF. Pettifer RM. Rickling S. Tetrahedron 2000; 56: 979
    • 14b Moon B. Han S. Yoon Y. Kwon H. Org. Lett. 2005; 7: 1031
    • 14c Trost BM. Silverman SM. J. Am. Chem. Soc. 2012; 134: 4941
    • 14d Schultz EE. Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
    • 14e Jiang B. Yang C.-G. Wang J. J. Org. Chem. 2001; 66: 4865
  • 15 Ankner T. Hilmersson G. Org. Lett. 2009; 11: 503
  • 16 2-Methylindan-1-one (5a); Typical Procedure To a solution of SmI2 (0.13 M in THF; 16 mL, 2.1 mmol) was added 3a (0.52 mmol, 155.6 mg) followed by H2O (15.6 mmol, 0.28 mL) and pyrrolidine (10.4 mmol, 0.86 mL) under an argon atmosphere. The mixture immediately turned white upon addition of pyrrolidine. The mixture was then stirred for 0.5 h at r.t., then diluted with EtOAc (6 mL) and treated with 0.5 M aq HCl (4 mL). The aqueous phase was extracted with EtOAc (2 ×), and the organic phases were combined, washed with brine, dried (Na2SO4), filtered, and concentrated. The crude product was purified by column chromatography [silica gel, PE–EtOAc (20:1)] to give a yellow oil; yield: 69 mg (91%). 1H NMR (600 MHz, CDCl3): δ = 7.76 (d, J = 7.7 Hz, 1 H), 7.61–7.56 (m, 1 H), 7.45 (d, J = 7.7 Hz, 1 H), 7.37 (t, J = 7.4 Hz, 1 H), 3.44–3.36 (m, 1 H), 2.79–2.66 (m, 2 H), 1.32 (t, J = 7.0 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 209.4, 153.4, 136.4, 134.6, 127.3, 126.5, 124.0, 42.0, 35.0, 16.3. HRMS (EI): m/z [M+] calcd for C10H10O: 146.0726; found: 146.0725.
    • 17a Zheng H.-X. Xiao Z.-F. Yao C.-Z. Li Q.-Q. Ning X.-S. Kang Y.-B. Tang Y. Org. Lett. 2015; 17: 6102
    • 17b Szostak M. Spain M. Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
    • 17c Ouyang K. Hao W. Zhang W.-X. Xi Z. Chem. Rev. 2015; 115: 12045
    • 18a Reid JP. Simón L. Goodman JM. Acc. Chem. Res. 2016; 49: 1029
    • 18b So Y.-H. Heeschen JP. J. Org. Chem. 1997; 62: 3552