Synlett 2017; 28(13): 1510-1516
DOI: 10.1055/s-0036-1589020
synpacts
© Georg Thieme Verlag Stuttgart · New York

Glycosyl Stille Cross-Coupling with Anomeric Nucleophiles – A General Solution to a Long-Standing Problem of Stereocontrolled Synthesis of C-Glycosides

Feng Zhu
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA   Email: maciej.walczak@colorado.edu
,
Tianyi Yang
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA   Email: maciej.walczak@colorado.edu
,
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA   Email: maciej.walczak@colorado.edu
› Author Affiliations
Further Information

Publication History

Received: 10 March 2017

Accepted after revision: 06 April 2017

Publication Date:
24 May 2017 (online)

Abstract

Aryl C-glycosides are common structural motifs found in bioactive natural products and commercially available drugs. Despite their importance, most chemical methods to prepare C-glycosides have relied on the nucleophilic addition/substitution of a glycosyl electrophile, which result in variable anomeric selectivities and yields. Furthermore, these methods are not compatible with saccharides containing free hydroxyl groups. Here, we describe a direct cross-coupling reaction of anomeric nucleophiles (anomeric stannanes) and aryl halides. This method is the first general approach to the synthesis of aryl C-glycosides resulting in exclusive anomeric selectivities for both anomers for a broad range of aryl and carbohydrate coupling partners (including unprotected saccharides).

1 Introduction

2 Synthesis of Anomeric Stannanes

3 Glycosyl Stille Cross-Coupling

4 Future Outlook

5 Summary

 
  • References and Notes

  • 1 Essentials of Glycobiology. Varki A. Cummings RD. Esko JD. Freeze HH. Stanley P. Bertozzi CR. Hart GW. Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor (NY, USA): 2009
  • 2 Gantt RW. Peltier-Pain P. Thorson JS. Nat. Prod. Rep. 2011; 28: 1811
  • 3 Kharel MK. Pahari P. Shepherd MD. Tibrewal N. Nybo SE. Shaaban KA. Rohr J. Nat. Prod. Rep. 2012; 29: 264
  • 5 Hultin PG. Curr. Top. Med. Chem. 2005; 5: 1299
  • 6 Bokor É. Kun S. Goyard D. Tóth M. Praly J.-P. Vidal S. Somsák L. Chem. Rev. 2017; 117: 1687
    • 7a Cañeque T. Gomes F. Mai TT. Maestri G. Malacria M. Rodriguez R. Nat. Chem. 2015; 7: 744
    • 7b Elshahawi SI. Shaaban KA. Kharel MK. Thorson JS. Chem. Soc. Rev. 2015; 44: 7591
    • 7c Krohn K. Rohr J. In Bioorganic Chemistry Deoxysugars, Polyketides and Related Classes: Synthesis, Biosynthesis, Enzymes. Vol. 188 Rohr J. Springer; Berlin: 1997: 127-195
    • 7d Bililign T. Griffith BR. Thorson JS. Nat. Prod. Rep. 2005; 22: 742
    • 7e Gould SJ. Chem. Rev. 1997; 97: 2499
    • 7f Hultin PG. Curr. Top. Med. Chem. 2005; 5: 1299
    • 7g Krohn K. Eur. J. Org. Chem. 2002; 1351
    • 7h Smoliakova IP. Curr. Org. Chem. 2000; 4: 589
    • 7i Weymouth-Wilson AC. Nat. Prod. Rep. 1997; 14: 99
    • 9a Kang H. Ku S.-K. Jung B. Bae J.-S. Inflammation Res. 2015; 64: 1005
    • 9b Shie J.-J. Chen C.-A. Lin C.-C. Ku AF. Cheng T.-JR. Fang J.-M. Wong C.-H. Org. Biomol. Chem. 2010; 8: 4451
    • 10a Chairatana P. Zheng T. Nolan EM. Chem. Sci. 2015; 6: 4458
    • 10b Johnstone TC. Nolan EM. Dalton Trans. 2015; 44: 6320
    • 11a Bister B. Bischoff D. Nicholson GJ. Valdebenito M. Schneider K. Winkelmann G. Hantke K. Süssmuth RD. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 2004; 17: 471
    • 11b Hantke K. Nicholson G. Rabsch W. Winkelmann G. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 3677
  • 12 Iharaa Y. Inaia Y. Ikezakia M. Matsuia I.-SL. Manabeb S. Ito Y. In Glycoscience: Biology and Medicine . Taniguchi N. Endo T. Hart GW. Seeberger PH. Wong C.-H. Springer; Japan: 2014
  • 13 Nishikawa T. Koide Y. Kanakubo A. Yoshimura H. Isobe M. Org. Biomol. Chem. 2006; 4: 1268
  • 14 De Clercq E. J. Med. Chem. 2016; 59: 2301
  • 15 Cho A. Zhang L. Xu J. Lee R. Butler T. Metobo S. Aktoudianakis V. Lew W. Ye H. Clarke M. Doerffler E. Byun D. Wang T. Babusis D. Carey AC. German P. Sauer D. Zhong W. Rossi S. Fenaux M. McHutchison JG. Perry J. Feng J. Ray AS. Kim CU. J. Med. Chem. 2014; 57: 1812
    • 16a Nauck MA. Drug Des. Dev. Ther. 2014; 8
    • 16b Idris I. Donnelly R. Diabetes Obes. Metabol. 2009; 11: 79
  • 17 Shubrook JH. Bokaie BB. Adkins SE. Drug Des., Dev. Ther. 2015; 9: 5793
  • 18 Meng W. Ellsworth BA. Nirschl AA. McCann PJ. Patel M. Girotra RN. Wu G. Sher PM. Morrison EP. Biller SA. Zahler R. Deshpande PP. Pullockaran A. Hagan DL. Morgan N. Taylor JR. Obermeier MT. Humphreys WG. Khanna A. Discenza L. Robertson JG. Wang A. Han S. Wetterau JR. Janovitz EB. Flint OP. Whaley JM. Washburn WN. J. Med. Chem. 2008; 51: 1145
    • 19a Grempler R. Thomas L. Eckhardt M. Himmelsbach F. Sauer A. Sharp DE. Bakker RA. Mark M. Klein T. Eickelmann P. Diabetes, Obes. Metab. 2012; 14: 83
    • 19b McGill JB. Diabetes Ther. 2014; 5: 43
  • 20 Hedrington MS. Davis SN. Expert Opin. Drug Metab. Toxicol. 2015; 11: 613
    • 21a Terra SG. Focht K. Davies M. Frias J. Derosa G. Darekar A. Golm G. Johnson J. Saur D. Lauring B. Dagogo-Jack S. Diabetes, Obes. Metab. 2017; 19: 721
    • 21b Miao Z. Nucci G. Amin N. Sharma R. Mascitti V. Tugnait M. Vaz AD. Callegari E. Kalgutkar AS. Drug Metab. Dispos. 2013; 41: 445
    • 22a Chao EC. Henry RR. Nat. Rev. Drug Discovery 2010; 9: 551
    • 22b Gosch C. Halbwirth H. Stich K. Phytochemistry 2010; 71: 838
    • 22c Ehrenkranz JR. L. Lewis NG. Kahn CR. Roth J. Diabetes/Metab. Res. Rev. 2005; 21: 31
    • 22d Ehrenkranz JR. L. Lewis NG. Kahn CR. Roth J. Diabetes/Metab. Res. Rev. 2005; 21: 31
    • 23a Jaramillo C. Knapp S. Synthesis 1994; 1
    • 23b Parker KA. Su DS. J. Carbohydr. Chem. 2005; 24: 187
    • 23c Lee DY. W. He M. Curr. Top. Med. Chem. 2005; 5: 1333
  • 24 Lemaire S. Houpis IN. Xiao T. Li J. Digard E. Gozlan C. Liu R. Gavryushin A. Diène C. Wang Y. Farina V. Knochel P. Org. Lett. 2012; 14: 1480
    • 25a Gong H. Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177
    • 25b Gong H. Sinisi R. Gagné MR. J. Am. Chem. Soc. 2007; 129: 1908
  • 26 Nicolas L. Angibaud P. Stansfield I. Bonnet P. Meerpoel L. Reymond S. Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11101
  • 27 Andrews FL. Larsen DS. Tetrahedron Lett. 1994; 35: 8693
  • 28 Ellsworth BA. Doyle AG. Patel M. Caceres-Cortes J. Meng W. Deshpande PP. Pullockaran A. Washburn WN. Tetrahedron: Asymmetry 2003; 14: 3243
  • 29 Hartung J. Wright BJ. D. Danishefsky SJ. Chem. Eur. J. 2014; 20: 8731
  • 30 Parkan K. Pohl R. Kotora M. Chem. Eur. J. 2014; 20: 4414
    • 31a Lancelin J.-M. Morin-Allory L. Sinay P. J. Chem. Soc., Chem. Commun. 1984; 355
    • 31b Lesimple P. Beau J.-M. Sinaÿ P. Carbohydr. Res. 1987; 171: 289
    • 32a Wittmann V. Kessler H. Angew. Chem., Int. Ed. Engl. 1993; 32: 1091
    • 32b Burkhart F. Hoffmann M. Kessler H. Tetrahedron Lett. 1998; 39: 7699
  • 33 Zhu F. Rourke MJ. Yang T. Rodriguez J. Walczak MA. J. Am. Chem. Soc. 2016; 138: 12049
  • 34 Wang D.-Y. Wang C. Uchiyama M. J. Am. Chem. Soc. 2015; 137: 10488
  • 35 Uhlmann P. Nanz D. Boz E. Vasella A. Helv. Chim. Acta 1994; 77: 1430
    • 36a Wang C.-Y. Derosa J. Biscoe MR. Chem. Sci. 2015; 6: 5105
    • 36b Li L. Wang C.-Y. Huang R. Biscoe MR. Nat. Chem. 2013; 5: 607
  • 37 Hicks JD. Hyde AM. Cuezva AM. Buchwald SL. J. Am. Chem. Soc. 2009; 131: 16720
  • 38 Ágoston K. Streicher H. Fügedi P. Tetrahedron: Asymmetry 2016; 27: 707
  • 39 Thibodeaux CJ. Melancon CE. Liu H.-W. Nature (London, U.K.) 2007; 446: 1008
    • 40a Gamblin DP. Scanlan EM. Davis BG. Chem. Rev. 2009; 109: 131
    • 40b Boutureira O. Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
  • 41 Singh S. Aggarwal A. Bhupathiraju NV. S. D. K. Arianna G. Tiwari K. Drain CM. Chem. Rev. 2015; 115: 10261