Synlett 2017; 28(20): 2956-2960
DOI: 10.1055/s-0036-1589098
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Arylation of Benzylic C–H Bonds of Azaarylmethanes with Aryl Sulfides

Ke Gao
,
Keita Yamamoto
,
Keisuke Nogi
,
Hideki Yorimitsu*
This work was supported by JSPS KAKENHI Grant Numbers JP16H01019, JP16H04109, JP16H06887, as well as JST ACT-C Grant Number JPMJCR12ZE, Japan. H.Y. thanks the Japan Association for Chemical Innovation, the Tokuyama Science Foundation, and The Naito Foundation for financial support. G.K. acknowledges a JSPS Postdoctoral Fellowship for Foreign Researchers.
Further Information

Publication History

Received: 26 June 2017

Accepted after revision: 17 July 2017

Publication Date:
17 August 2017 (eFirst)

Dedicated to Professor Victor Snieckus in celebration of his 80th birthday

Abstract

Benzylic C–H arylation of azaarylmethanes with aryl sulfides has been developed by using a Pd-NHC catalyst and an amide base. Various azaarylmethanes and aryl sulfides were involved in the reaction to afford the corresponding diarylmethanes in good to excellent yields. Moreover, triarylmethane synthesis was accomplished through iterative arylations of 2- or 4-methylpyridine with two different aryl sulfides.

Supporting Information

 
  • References and Notes

    • 2a Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 2b Littke AF. Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 2c Bedford RB. Cazin CS. J. Holder D. Coord. Chem. Rev. 2004; 248: 2283
    • 3a Amii H. Uneyama K. Chem. Rev. 2009; 109: 2119
    • 3b Ohashi M. Ogoshi S. Catalysts 2014; 4: 321
    • 3c Ahrens T. Kohlmann J. Ahrens M. Braun T. Chem. Rev. 2015; 115: 931
    • 3d Ohashi M. Ogoshi S. J. Synth. Org. Chem., Jpn. 2016; 74: 1047
    • 4a Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 4b Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 4c Tobisu M. Chatani N. Top. Organomet. Chem. 2013; 44: 35
    • 4d Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 4e Li W.-N. Wang Z.-L. RSC Adv. 2013; 3: 25565
    • 4f Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 4g Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 4h Tollefson EJ. Hanna LE. Jarvo ER. Acc. Chem. Res. 2015; 48: 2344

      For reviews, see:
    • 5a Sugimura H. Okamura H. Miura M. Yoshida M. Takei H. Nippon Kagaku Kaishi 1985; 416
    • 5b Naso F. Pure Appl. Chem. 1988; 60: 79
    • 5c Luh T.-Y. Ni Z.-J. Synthesis 1990; 89
    • 5d Luh T.-Y. Acc. Chem. Res. 1991; 24: 257
    • 5e Fiandanese V. Pure Appl. Chem. 1990; 62: 1987
    • 5f Dubbaka SR. Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 5g Prokopcová H. Kappe CO. Angew. Chem. Int. Ed. 2008; 47: 3674
    • 5h Wang L. He W. Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 5i Modha SG. Mehta VP. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 5j Pan F. Shi Z.-J. ACS Catal. 2014; 4: 280
    • 5k Gao K. Otsuka S. Baralle A. Nogi K. Yorimitsu H. Osuka A. J. Synth. Org. Chem., Jpn. 2016; 74: 1119
    • 6a Kanemura S. Kondoh A. Yorimitsu H. Oshima K. Synthesis 2008; 2659
    • 6b Ookubo Y. Wakamiya A. Yorimitsu H. Osuka A. Chem. Eur. J. 2012; 18: 12690
    • 6c Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
    • 6d Sugahara T. Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 6e Otsuka S. Fujino D. Murakami K. Yorimitsu H. Osuka A. Chem. Eur. J. 2014; 20: 13146
    • 6f Baralle A. Otsuka S. Guérin V. Murakami K. Yorimitsu H. Osuka A. Synlett 2015; 26: 327
    • 6g Gao K. Yorimitsu H. Osuka A. Eur. J. Org. Chem. 2015; 2678
    • 6h Otsuka S. Yorimitsu H. Osuka A. Chem. Eur. J. 2015; 21: 14703
    • 6i Baralle A. Yorimitsu H. Osuka A. Chem. Eur. J. 2016; 22: 10768
    • 6j Gao K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2016; 55: 4573

      For recent reviews on transition-metal-mediated synthesis of diarylmethanes and triarylmethanes, see:
    • 7a Houwer JD. Maes BU. W. Synthesis 2014; 46: 2533
    • 7b Nambo M. Crudden CM. ACS Catal. 2015; 5: 4734

      For diarylmethane synthesis through C–H arylation with aryl electrophiles, see:
    • 8a Campeau L.-C. Schipper DJ. Fagnou K. J. Am. Chem. Soc. 2008; 130: 3266
    • 8b Mousseau JJ. Larivee A. Charette AB. Org. Lett. 2008; 10: 1641
    • 8c Schipper DJ. Campeau L.-C. Fagnou K. Tetrahedron 2009; 65: 3155
    • 8d Burton PM. Morris JA. Org. Lett. 2010; 12: 5359
    • 8e Duez S. Steib AK. Manolikakes SM. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 7686
    • 8f Duez S. Steib AK. Knochel P. Org. Lett. 2012; 14: 1951

      For triarylmethane synthesis through C–H arylation of diarylmethanes with aryl electrophiles, see:
    • 9a Inoh J.-I. Satoh T. Pivsa-Art S. Miura M. Nomura M. Tetrahedron Lett. 1998; 39: 4673
    • 9b Niwa T. Yorimitsu H. Oshima K. Org. Lett. 2007; 9: 2373
    • 9c McGrew GI. Temaismithi J. Carroll PJ. Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
    • 9d Song G. Su Y. Gong X. Han K. Li X. Org. Lett. 2011; 13: 1968
    • 9e Zhang J. Bellomo A. Creamer AD. Dreher SD. Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
    • 9f Chen J.-J. Onogi S. Hsieh Y.-C. Hsiao C.-C. Higashibayashi S. Sakurai H. Wu Y.-T. Adv. Synth. Catal. 2012; 354: 1551
    • 9g Bellomo A. Zhang J. Trongsiriwat N. Walsh PJ. Chem. Sci. 2013; 4: 849
    • 9h Zhang J. Bellomo A. Trongsiriwat N. Jia T. Carroll PJ. Dreher SD. Tudge MT. Yin H. Robinson JR. Schelter EJ. Walsh PJ. J. Am. Chem. Soc. 2014; 136: 6276
    • 9i Ji X. Huang T. Wu W. Liang F. Cao S. Org. Lett. 2015; 17: 5096
    • 9j Cao X. Sha S.-C. Li M. Kim B.-S. Morgan C. Huang R. Yang X. Walsh PJ. Chem. Sci. 2016; 7: 611
    • 9k Zhang J. Sha S.-C. Bellomo A. Trongsiriwat N. Gao F. Tomson NC. Walsh PJ. J. Am. Chem. Soc. 2016; 138: 4260
    • 10a Kantchev EA. B. Ying JY. Organometallics 2009; 28: 289
    • 10b Peh G.-R. Kantchev EA. B. Er J.-C. Ying JY. Chem. Eur. J. 2010; 16: 4010
  • 11 C–H Arylation of 2a with 1a; Typical Procedure: A Schlenk tube was charged with SingaCycle-A3 (10 mg, 0.015 mmol), potassium bis(trimethylsilyl)amide (KN(SiMe3)2; 0.18 g, 0.90 mmol) and octane (1.0 mL). Methyl phenyl sulfide (1a; 38 mg, 0.30 mmol) and 2-methylpyridine (2a; 59 μL, 0.60 mmol) were added, and the resulting mixture was stirred at 100 °C for 12 h. After the addition of H2O, the mixture was passed through pads of Na2SO4 and silica gel, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (toluene/EtOAc, 5:1) to give 3aa (40 mg, 0.23 mmol, 78%) as a yellow oil. All the resonances in 1H and 13C NMR spectra were consistent with reported values, see: Niwa T. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed. 2007; 46: 2643

    • For reviews of Pd-PEPPSI-NHC catalysts, see:
    • 12a Kantchev EA. B. O’Brien CJ. Organ MG. Aldrichimica Acta 2006; 39: 117
    • 12b Organ MG. Chass GA. Fang D.-C. Hopkinson AC. Valente C. Synthesis 2008; 2776
    • 12c Valente C. Çalimsiz S. Hoi KH. Mallik D. Sayah M. Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
  • 13 Isomeric 2-, 3-, and 4-methylpyridines have pK a values of 34, 37.7, and 32.3 in THF, respectively, see: Fraser RR. Mansour TS. Savard S. J. Org. Chem. 1985; 50: 3232