Synlett 2017; 28(19): 2509-2516
DOI: 10.1055/s-0036-1590867
synpacts
© Georg Thieme Verlag Stuttgart · New York

Tracking On-Surface Chemistry with Atomic Precision

Peter H. Jacobse*a, b, Marc-Etienne Moreta, Robertus J. M. Klein Gebbinka, Ingmar Swartb
  • aOrganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands   Email: p.h.jacobse@uu.nl
  • bCondensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands
We gratefully acknowledge funding by a NWO Graduate program and the Sector Plan Chemistry and Physics.
Further Information

Publication History

Received: 02 June 2017

Accepted after revision: 14 July 2017

Publication Date:
17 August 2017 (eFirst)

Abstract

The field of on-surface synthesis has seen a tremendous development in the past decade as an exciting new methodology towards atomically well-defined nanostructures. A strong driving force in this respect is its inherent compatibility with scanning probe techniques, which allows one to ‘view’ the reactants and products at the single-molecule level. In this article, we review the ability of noncontact atomic force microscopy to study on-surface chemical reactions with atomic precision. We highlight recent advances in using noncontact atomic force microscopy to obtain mechanistic insight into reactions and focus on the recently elaborated mechanisms in the formation of different types of graphene nanoribbons.

 
  • References

  • 1 Davy H. Philos. Trans. R. Soc. London 1817; 107: 77
  • 2 Lindner R. Kühnle A. ChemPhysChem 2015; 16: 1582
  • 3 Björk J. J. Phys. Condens. Matter 2016; 28: 83002
  • 4 Narita A. Wang X.-Y. Feng X. Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 5 Narita A. Feng X. Müllen K. Chem. Rec. 2015; 15: 295
  • 6 Méndez J. López MF. Martín-Gago JA. Chem. Soc. Rev. 2011; 40: 4578
  • 7 Martin-Gago JA. Nat. Chem. 2011; 3: 11
  • 8 Otero G. Biddau G. Sanchez-Sanchez C. Caillard R. Lopez MF. Rogero C. Palomares FJ. Cabello N. Basanta MA. Ortega J. Mendez J. Echavarren AM. Perez R. Gomez-Lor B. Martin-Gago JA. Nature 2008; 454: 865
  • 9 Chen CJ. Introduction to Scanning Tunneling Microscopy. OUP; Oxford; 2008
  • 10 Repp J. Meyer G. Stojković SM. Gourdon A. Joachim C. Phys. Rev. Lett. 2005; 94: 26803
  • 11 Gross L. Mohn F. Moll N. Liljeroth P. Meyer G. Science 2009; 325: 1110
  • 12 Gross L. Nat. Chem. 2011; 3: 273
  • 13 Jarvis SP. Int. J. Mol. Sci. 2015; 16: 19936
  • 14 Altman EI. Baykara MZ. Schwarz UD. Acc. Chem. Res. 2015; 48: 2640
  • 15 Gross L. Mohn F. Moll N. Schuler B. Criado A. Guitián E. Peña D. Gourdon A. Meyer G. Science 2012; 337: 1326
  • 16 Kawai S. Sadeghi A. Feng X. Lifen P. Pawlak R. Glatzel T. Willand A. Orita A. Otera J. Goedecker S. Meyer E. ACS Nano 2013; 7: 9098
  • 17 Zhang J. Chen P. Yuan B. Ji W. Cheng Z. Qiu X. Science 2013; 342: 611
  • 18 Hämäläinen SK. van der Heijden N. van der Lit J. den Hartog S. Liljeroth P. Swart I. Phys. Rev. Lett. 2014; 113: 186102
  • 19 Hapala P. Švec M. Stetsovych O. van der Heijden NJ. Ondráček M. van der Lit J. Mutombo P. Swart I. Jelínek P. Nat. Commun. 2016; 7: 11560
  • 20 Schuler B. Meyer G. Peña D. Mullins OC. Gross L. J. Am. Chem. Soc. 2015; 137: 9870
  • 21 Lafferentz L. Eberhardt V. Dri C. Africh C. Comelli G. Esch F. Hecht S. Grill L. Nat. Chem. 2012; 4: 215
  • 22 Kawai S. Haapasilta V. Lindner BD. Tahara K. Spijker P. Buitendijk JA. Pawlak R. Meier T. Tobe Y. Foster AS. Meyer E. Nat. Commun. 2016; 7: 12711
  • 23 Wang D. Chen Q. Wan L.-J. Phys. Chem. Chem. Phys. 2008; 10: 6467
  • 24 Hla S.-W. Bartels L. Meyer G. Rieder K.-H. Phys. Rev. Lett. 2000; 85: 2777
  • 25 Hla S.-W. Rieder K.-H. Annu. Rev. Phys. Chem. 2003; 54: 307
  • 26 Schuler B. Fatayer S. Mohn F. Moll N. Pavliček N. Meyer G. Peña D. Gross L. Nat. Chem. 2016; 8: 220
  • 27 Riss A. Paz AP. Wickenburg S. Tsai H.-Z. De Oteyza DG. Bradley AJ. Ugeda MM. Gorman P. Jung HS. Crommie MF. Rubio A. Fischer FR. Nat. Chem. 2016; 8: 678
  • 28 Pavliček N. Schuler B. Collazos S. Moll N. Pérez D. Guitián E. Meyer G. Peña D. Gross L. Nat. Chem. 2015; 7: 623
  • 29 de Oteyza DG. Gorman P. Chen Y.-C. Wickenburg S. Riss A. Mowbray DJ. Etkin G. Pedramrazi Z. Tsai H.-Z. Rubio A. Crommie MF. Fischer FR. Science 2013; 340: 1434
  • 30 Albrecht F. Pavliček N. Herranz-Lancho C. Ruben M. Repp J. J. Am. Chem. Soc. 2015; 137: 7424
  • 31 Albrecht F. Bischoff F. Auwärter W. Barth JV. Repp J. Nano Lett. 2016; 16: 7703
  • 32 Pavliček N. Fleury B. Neu M. Niedenführ J. Herranz-Lancho C. Ruben M. Repp J. Phys. Rev. Lett. 2012; 108: 86101
  • 33 Kawai S. Foster AS. Björkman T. Nowakowska S. Björk J. Canova FF. Gade LH. Jung TA. Meyer E. Nat. Commun. 2016; 7: 11559
  • 34 He Y. Garnica M. Bischoff F. Ducke J. Bocquet M.-L. Batzill M. Auwärter W. Barth JV. Nat. Chem. 2016; 9: 1
  • 35 Celis A. Nair MN. Taleb-Ibrahimi A. Conrad EH. Berger C. de Heer WA. Tejeda A. J. Phys. D. Appl. Phys. 2016; 49: 143001
  • 36 Terrones M. Botello-Méndez AR. Campos-Delgado J. López-Urías F. Vega-Cantú YI. Rodríguez-Macías FJ. Elías AL. Muñoz-Sandoval E. Cano-Márquez AG. Charlier J.-C. Terrones H. Nano Today 2010; 5: 351
  • 37 Ezawa M. Phys. Rev. B 2006; 73: 45432
  • 38 Barone V. Hod O. Scuseria GE. Nano Lett. 2006; 6: 2748
  • 39 Castro Neto AH. Guinea F. Peres NM. R. Novoselov KS. Geim AK. Rev. Mod. Phys. 2009; 81: 109
  • 40 Cai J. Pignedoli CA. Talirz L. Ruffieux P. Söde H. Liang L. Meunier V. Berger R. Li R. Feng X. Müllen K. Fasel R. Nat. Nanotechnol. 2014; 9: 1
  • 41 Wang X. Ouyang Y. Jiao L. Wang H. Xie L. Wu J. Guo J. Dai H. Nat. Nanotechnol. 2011; 6: 563
  • 42 Liao W. Bao H. Guo J. Zhao H. Appl. Phys. A 2015; 120: 657
  • 43 Talirz L. Söde H. Dumslaff T. Wang S. Sanchez-Valencia JR. Liu J. Shinde P. Pignedoli CA. Liang L. Meunier V. Plumb NC. Shi M. Feng X. Narita A. Müllen K. Fasel R. Ruffieux P. ACS Nano 2017; 11: 1380
  • 44 Söde H. Talirz L. Gröning O. Pignedoli CA. Berger R. Feng X. Müllen K. Fasel R. Ruffieux P. Phys. Rev. B 2015; 91: 45429
  • 45 Wang S. Talirz L. Pignedoli CA. Feng X. Müllen K. Fasel R. Ruffieux P. Nat. Commun. 2015; 7: 11507
  • 46 Cai J. Ruffieux P. Jaafar R. Bieri M. Braun T. Blankenburg S. Muoth M. Seitsonen AP. Saleh M. Feng X. Müllen K. Fasel R. Nature 2010; 466: 470
  • 47 Batra A. Cvetko D. Kladnik G. Adak O. Cardoso C. Ferretti A. Prezzi D. Molinari E. Morgante A. Venkataraman L. Chem. Sci. 2014; 5: 4419
  • 48 Bronner C. Björk J. Tegeder P. J. Phys. Chem. 2015; 119: 486
  • 49 Björk J. Stafström S. Hanke F. J. Am. Chem. Soc. 2011; 133: 14884
  • 50 van der Lit J. Boneschanscher MP. Vanmaekelbergh D. Ijäs M. Uppstu A. Ervasti M. Harju A. Liljeroth P. Swart I. Nat. Commun. 2013; 4: 2023
  • 51 Talirz L. Ruffieux P. Fasel R. Adv. Mater. 2016; 28: 6222
  • 52 Yang X. Dou X. Rouhanipour A. Zhi L. Räder HJ. Müllen K. Ra HJ. Mu K. J. Am. Chem. Soc. 2008; 130: 4216
  • 53 Narita A. Feng X. Hernandez Y. Jensen SA. Bonn M. Yang H. Verzhbitskiy IA. Casiraghi C. Hansen MR. Koch AH. R. Fytas G. Ivasenko O. Li B. Mali KS. Balandina T. Mahesh S. De Feyter S. Müllen K. Nat. Chem. 2014; 6: 126
  • 54 James DK. Tour JM. Macromol. Chem. Phys. 2012; 213: 1033
  • 55 Yazyev OV. Acc. Chem. Res. 2013; 46: 2319
  • 56 Kawai S. Saito S. Osumi S. Yamaguchi S. Foster AS. Spijker P. Meyer E. Nat. Commun. 2015; 6: 8098
  • 57 Bronner C. Stremlau S. Gille M. Brauße F. Haase A. Hecht S. Tegeder P. Angew. Chem. Int. Ed. 2013; 52: 4422
  • 58 Zhang Y. Zhang Y. Li G. Lu J. Lin X. Du S. Berger R. Feng X. Müllen K. Gao H.-J. Appl. Phys. Lett. 2014; 105: 23101
  • 59 Cai J. Pignedoli CA. Talirz L. Ruffieux P. Söde H. Liang L. Meunier V. Berger R. Li R. Feng X. Müllen K. Fasel R. Nat. Nanotechnol. 2014; 9: 896
  • 60 Cloke RR. Marangoni T. Nguyen GD. Joshi T. Rizzo DJ. Bronner C. Cao T. Louie SG. Crommie MF. Fischer FR. J. Am. Chem. Soc. 2015; 137: 8872
  • 61 Nguyen GD. Toma FM. Cao T. Pedramrazi Z. Chen C. Rizzo DJ. Joshi T. Bronner C. Chen Y.-C. Favaro M. Louie SG. Fischer FR. Crommie MF. J. Phys. Chem. C 2016; 120: 2684
  • 62 Kimouche A. Ervasti MM. Drost R. Halonen S. Harju A. Joensuu PM. Sainio J. Liljeroth P. Nat. Commun. 2015; 6: 10177
  • 63 Liu J. Li B.-W. Tan Y. Giannakopoulos A. Sanchez-Sanchez C. Beljonne D. Ruffieux P. Fasel R. Feng X. Müllen K. J. Am. Chem. Soc. 2015; 137: 6097
  • 64 Jacobse PH. van den Hoogenband A. Moret ME. Klein Gebbink RJ. M. Swart I. Angew. Chem. Int. Ed. 2016; 55: 13052
  • 65 Chen Y.-C. de Oteyza DG. Pedramrazi Z. Chen C. Fischer FR. Crommie MF. ACS Nano 2013; 7: 6123
  • 66 Simonov KA. Vinogradov NA. Vinogradov AS. Generalov AV. Zagrebina EM. Mårtensson N. Cafolla AA. Carpy T. Cunniffe JP. Preobrajenski AB. J. Phys. Chem. C 2014; 118: 12532
  • 67 Han P. Akagi K. Federici Canova F. Mutoh H. Shiraki S. Iwaya K. Weiss PS. Asao N. Hitosugi T. ACS Nano 2014; 8: 9181
  • 68 Simonov KA. Vinogradov NA. Vinogradov AS. Generalov AV. Zagrebina EM. Svirskiy GI. Cafolla AA. Carpy T. Cunniffe JP. Taketsugu T. Lyalin A. Mårtensson N. Preobrajenski AB. ACS Nano 2015; 9: 8997
  • 69 Han P. Akagi K. Federici Canova F. Shimizu R. Oguchi H. Shiraki S. Weiss PS. Asao N. Hitosugi T. ACS Nano 2015; 9: 12035
  • 70 Simonov KA. Vinogradov NA. Vinogradov AS. Generalov AV. Zagrebina EM. Mårtensson N. Cafolla AA. Carpy T. Cunniffe JP. Preobrajenski AB. ACS Nano 2015; 9: 3399
  • 71 Han P. Akagi K. Federici Canova F. Mutoh H. Shiraki S. Iwaya K. Weiss PS. Asao N. Hitosugi T. ACS Nano 2015; 9: 3404
  • 72 Schulz F. Jacobse PH. Canova FF. van der Lit J. Gao DZ. van den Hoogenband A. Han P. Klein Gebbink RJ. M. M. Moret M.-E. Joensuu PM. Swart I. Liljeroth P. J. Phys. Chem. C 2017; 121: 2896
  • 73 Sánchez-Sánchez C. Dienel T. Deniz O. Ruffieux P. Berger R. Feng X. Müllen K. Fasel R. ACS Nano 2016; 10: 8006