Synlett 2017; 28(20): 2906-2912
DOI: 10.1055/s-0036-1590899
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of 3-Amido-Dienynes via a Tandem α-Propargylation–Isomerization of Chiral Allenamides and their Applications in Diels–Alder Cycloadditions

,
Li-Chao Fang
,
Bryan J. Haugen
,
Daniel Bruckbauer
,
John B. Feltenberger
,
Richard P. Hsung*
The authors thank NIH (GM-66055) for generous funding. Authors also thank UW-Madison Medicinal Chemistry Center for financial support. RPH thanks Laura and Edward Kremers Family Foundation for a generous endowed chair in natural products chemistry.
Further Information

Publication History

Received: 08 June 2017

Accepted after revision: 11 August 2017

Publication Date:
01 September 2017 (eFirst)

With deep respect and admiration, this paper is dedicated to Professor Victor Snieckus on the special occasion of his 80th birthday

Abstract

A series of interesting 3-amido-dienynes was synthesized via tandem α-propargylation–isomerization of chiral allenamides with moderate E/Z ratio. Reactivities of E and Z isomers were examined.

Supporting Information

 
  • References and Notes

  • 1 New address: China Novartis Institutes for BioMedical Research, Shanghai, P. R. of China.
    • 2a Hayashi R. Hsung RP. Feltenberger JB. Lohse AG. Org. Lett. 2009; 11: 2125
    • 2b Hayashi R. Feltenberger JB. Hsung RP. Org. Lett. 2010; 12: 1152
    • 2c Hayashi R. Walton MC. Hsung RP. Schwab J. Yu X. Org. Lett. 2010; 12: 5768
    • 2d Hayashi R. Feltenberger JB. Lohse AG. Walton MC. Hsung RP. Beilstein J. Org. Chem. 2011; 7: 410
    • 3a Hsung RP. Wei L.-L. Xiong H. Acc. Chem. Res. 2003; 36: 773
    • 3b Lu T. Lu Z. Ma Z.-X. Zhang Y. Hsung RP. Chem. Rev. 2013; 113: 4862
    • 4a Feltenberger JB. Hsung RP. Org. Lett. 2011; 13: 3114
    • 4b Hayashi R. Ma Z.-X. Hsung RP. Org. Lett. 2012; 14: 252
    • 4c Fang L.-C. Hsung RP. Ma Z.-X. Presser WR. Org. Lett. 2013; 15: 4842
    • 4d Fang L.-C. Hsung RP. Org. Lett. 2014; 16: 1826
  • 5 In terms of 3-amidotrienes/dienynes, those with alkenes as part of an aromatic system were not considered here.
    • 6a Camphell CD. Greenaway RL. Holton OT. Walker PB. Chapman HA. Russell CA. Carr G. Thomson AL. Anderson EA. Chem. Eur. J. 2015; 21: 12627
    • 6b Huntley RJ. Funk RL. Tetrahedron Lett. 2011; 52: 6671
    • 6c Greshock TJ. Funk RL. J. Am. Chem. Soc. 2006; 128: 4946
    • 6d Barluenga J. Aznar F. Cabal M. Valdés C. J. Chem. Soc., Perkin Trans. 1 1990; 633
  • 7 Li X. Peng S. Huang Y. Nat. Commun. 2015; 6: 6913
    • 8a Aguilar E. Sanz R. Fernández-Rodríguez MA. García-García P. Chem. Rev. 2016; 116: 8256
    • 8b Hitt DM. O’Connor JM. Chem. Rev. 2011; 111: 7904
    • 8c Zimmermann G. Eur. J. Org. Chem. 2001; 457
  • 9 Sometimes a trace amount of the starting allenamide was detected after the reaction, which implies deprotonation by the α-deprotonated allenamide.
  • 10 When exploring the possible cyclization of the (E)-amidodieneynes (vide infra), we noticed decomposition and/or E/Z isomerization in the presence of some strong Lewis acids.
  • 11 Sibi MP. Porter NA. Acc. Chem. Res. 1999; 32: 163
  • 13 Khand IU. Knox GR. Pauson PL. Watts WE. Foreman MI. J. Chem. Soc., Perkin Trans. 1 1973; 977
  • 14 General Procedures for the Propargylation/1,3-H-Shift Sequence of Allenamides To a solution of allenamide 6 (1.0 equiv) and HMPA (1.5 equiv) in THF (0.1 M) was added dropwise n-BuLi (2.5 M in hexanes, 1.5 equiv) at –78 °C. After stirring for 45 min, propargyl bromide 7 (1.5 equiv) was added dropwise. The resulting solution was stirred at –78 °C for 1 h and then at rt for overnight. The reaction mixture was quenched with sat. aq NH4Cl solution, and the separated aqueous phase was extracted with EtOAc (3 times). The combined organic phases were washed with sat. aq NaCl solution, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford a crude product which was purified via silica gel flash column chromatography [gradient eluent: EtOAc in hexane with 1% Et3N added] to afford the desired products 4 and E/Z -5.
  • 15 Characterization of α-Propargyl Allenamide Product 4 and 3-Amidodienynes 5 Compounds 4a (77 mg, 34%), E-5a (34 mg, 15%), and Z-5a (59 mg, 26%) were obtained from allenamide 6a (172 mg) according to the general procedure. Compound 4a: pale yellow oil; Rf = 0.45 (hexane–EtOAc = 2:1); [α]D 25 27.2 (c 2.40, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.89 (d, J = 7.0 Hz, 3 H), 0.93 (d, J = 7.0 Hz, 3 H), 1.78 (t, J = 3.0 Hz, 3 H), 2.16 (dqq, J = 3.5, 7.0, 7.0 Hz, 1 H), 3.35 (ABMNX3, J AM = J BM = J MX = 2.5 Hz, J MN = 18 Hz, 1 H), 3.45 (ABMNX3, J NX = 2.5 Hz, J AN = J BN = 3.5 Hz, J MN = 18 Hz, 1 H), 3.91 (ddd, J = 3.5, 5.5, 9.0 Hz, 1 H), 4.12 (dd, J = 6.0, 8.5 Hz, 1 H), 4.28 (dd, J = 9.0, 9.0 Hz, 1 H), 5.19 (ABMN, J AM = 2.5 Hz, J AN = 3.5 Hz, J AB = 10.5 Hz, 1 H), 5.31 (ABMN, J BM = 2.5 Hz, J BN = 3.5 Hz, J AB = 10.5 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 3.7, 14.6, 17.9, 21.7, 28.2, 60.9, 63.3, 74.7, 78.2, 84.5, 105.5, 156.4, 204.4. IR (thin film): 3391 (br s), 2966 (w), 1748 (s), 1638 (w), 1452 (w), 1405 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C13H18NO2 [M + H]+: 220.1332; found: 220.1328. Compound E-5a: pale yellow oil; Rf = 0.42 (hexane–EtOAc = 2:1); [α]D 25 174.3 (c 0.88, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 0.86 (d, J = 6.8 Hz, 3 H), 0.88 (d, J = 6.8 Hz, 3 H), 1.91 (dqq, J = 4.0, 6.8, 6.8 Hz, 1 H), 2.03 (d, J = 2.4 Hz, 3 H), 4.01 (ddd, J = 4.0, 5.6, 8.8 Hz, 1 H), 4.15 (dd, J = 7.0, 9.2 Hz, 1 H), 4.35 (dd, J = 8.8, 8.8 Hz, 1 H), 5.29–5.41 (m, 2 H), 5.67 (s, 1 H), 6.77 (dd, J = 11.2, 17.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 4.96, 14.8, 18.0, 29.0, 61.2, 63.5, 75.3, 96.9, 111.8, 117.8, 129.7, 141.9, 156.8. IR (thin film): 3483 (br s), 2964 (w), 1747 (s), 1623 (w), 1576 (w), 1485 (w), 1402 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C13H18NO2 [M + H]+: 220.1332; found: 220.1329. Compound Z-5a: pale yellow oil; Rf = 0.40 (hexane–EtOAc = 2:1); [α]D 25 –24.3 (c 0.85, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (d, J = 7.0 Hz, 3 H), 0.97 (d, J = 7.0 Hz, 3 H), 1.90–1.98 (m, 1 H), 2.03 (d, J = 2.5 Hz, 3 H), 4.19–4.21 (m, 1 H), 4.35–4.41 (m, 2 H), 5.25 (d, J = 10.5 Hz, 1 H), 5.41 (d, J = 17.5 Hz, 1 H), 5.69 (q, J = 2.5 Hz, 1 H), 6.29 (dd, J = 10.5, 17.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 5.1, 16.0, 18.7, 29.7, 61.2, 64.7, 75.9, 97.8, 110.7, 117.2, 133.2, 142.6, 156.2. IR (thin film): 3422 (br s), 2966 (w), 1749 (s), 1485 (w), 1406 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C13H18NO2 [M + H]+: 220.1332; found: 220.1330. Compound E-5b (165 mg, 15%) and Z-5b (285 mg, 26%) were obtained from allenamide 6a (912 mg) according to the general procedure. Compound E-5b: pale yellow oil; Rf = 0.35 (hexane–EtOAc = 2:1); [α]D 25 88.0 (c 1.21, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.88 (d, J = 7.0 Hz, 3 H), 0.89 (d, J = 6.5 Hz, 3 H), 1.94 (dqq, J = 3.5, 7.0, 7.0 Hz, 1 H), 3.43 (d, J = 2.5 Hz, 3 H), 4.06 (ddd, J = 3.5, 5.0, 8.5 Hz, 1 H), 4.18 (dd, J = 5.5, 9.0 Hz, 1 H), 4.37 (dd, J = 8.5, 9.0 Hz, 1 H), 5.46 (d, J = 11.0 Hz, 1 H), 5.51 (d, J = 17.5 Hz, 1 H), 5.72 (s, 1 H), 6.78 (dd, J = 11.0, 17.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.7, 18.0, 29.0, 61.2, 63.5, 79.1, 87.3, 108.7, 119.7, 129.5, 144.7, 156.5. IR (thin film): 3303 (w), 3018 (w), 1748 (s), 1573 (w), 1485 (w), 1402 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C12H16NO2 [M + H]+: 206.1176; found: 206.1174. Compound Z-5b: pale yellow oil; Rf = 0.31 (hexane–EtOAc = 2:1); [α]D 25 –5.6 (c 1.62, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (d, J = 7.0 Hz, 3 H), 0.95 (d, J = 6.5 Hz, 3 H), 1.95 (dqq, J = 4.0, 7.0, 7.0 Hz, 1 H), 3.46 (d, J = 2.5 Hz, 1 H), 4.19 (dd, J = 6.0, 8.5 Hz, 1 H), 4.40 (dd, J = 8.5, 9.0 Hz, 1 H), 4.47 (ddd, J = 4.0, 6.0, 8.5 Hz, 1 H), 5.34 (d, J = 10.5 Hz, 1 H), 5.52 (d, J = 17.0 Hz, 1 H), 5.69 (d, J = 2.5 Hz, 1 H), 6.31 (dd, J = 10.5, 17.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 16.0, 18.5, 29.6, 61.0, 64.7, 79.4, 88.2, 107.7, 119.0, 132.9, 145.3, 155.9. IR (thin film): 3301 (w), 3016 (w), 2970 (w), 1749 (s), 1585 (w), 1485 (w), 1406 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C12H16NO2 [M + H]+: 206.1176; found: 206.1174. Compounds 4c (244 mg, 38%), E-5c (89 mg, 14%), and Z-5c (151 mg, 23%) were obtained from allenamide 6b (518 mg) according to the general procedure. Compound 4c: pale yellow oil; Rf = 0.60 (hexane–EtOAc = 2:1); [α]D 25 24.4 (c 0.95, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.81 (t, J = 2.5 Hz, 3 H), 2.71 (dd, J = 9.0, 14.0 Hz, 1 H), 3.27 (dd, J = 3.5, 14.0 Hz, 1 H), 3.42 (ABMNX3, J AM = J BM = J MX = 2.5 Hz, J MN = 18 Hz, 1 H), 3.48 (ABMNX3, J NX = 2.5 Hz, J AN = J BN = 3.0 Hz, J MN = 18 Hz, 1 H), 4.81 (dd, J = 5.5, 8.0 Hz, 1 H), 4.14–4.20 (m, 1 H), 4.23 (dd, J = 8.0, 8.0 Hz, 1 H), 5.29 (ABMN, J AM = 1.5 Hz, J AN = 3.0 Hz, J AB = 10.5 Hz, 1 H), 5.40 (ABMN, J BM = 2.0 Hz, J BN = 3.0 Hz, J AB = 10.5 Hz, 1 H), 7.16–7.18 (m, 2 H), 7.25–7.28 (m, 1 H), 7.31–7.34 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 3.6, 21.8, 38.6, 58.2, 67.1, 74.6, 78.3, 85.0, 105.8, 127.3, 129.1, 129.3, 135.9, 155.8, 204.3. IR (thin film): 3369 (br s), 3027 (w), 2920 (w), 1749 (s), 1604 (w), 1497 (w), 1479 (w), 1453 (m), 1402 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C17H18NO2 [M + H]+: 268.1332; found: 268.1328. Compound E-5c: pale yellow solid, mp 46–47 °C; Rf = 0.55 (hexane–EtOAc = 2:1); [α]D 25 70.0 (c 0.91, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 2.07 (d, J = 2.5 Hz, 3 H), 2.59 (dd, J = 10.0, 13.5 Hz, 1 H), 3.07 (dd, J = 3.5, 13.5 Hz, 1 H), 4.11–4.15 (m, 1 H), 4.22–4.30 (m, 2 H), 5.41 (d, J = 10.5 Hz, 1 H), 5.43 (d, J = 17.5 Hz, 1 H), 5.74 (m, 1 H), 6.88 (dd, J = 11.0, 17.5 Hz, 1 H), 7.10–7.12 (m, 2 H), 7.24–7.27 (m, 1 H), 7.30–7.32 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 5.0, 39.0, 58.5, 67.3, 75.2, 97.2, 112.5, 117.9, 127.4, 129.1, 129.2, 135.5, 141.7, 156.3. IR (thin film): 3405 (br s), 3016 (w), 2918 (w), 1753 (s), 1624 (w), 1497 (w), 1479 (w), 1454 (w), 1403 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C17H18NO2 [M + H]+: 268.1332; found: 268.1327. Compound Z-5c: pale yellow oil; Rf = 0.52 (hexane–EtOAc = 2:1); [α]D 25 –57.6 (c 1.09, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 2.06 (d, J = 2.5 Hz, 3 H), 2.67 (dd, J = 10.5, 13.5 Hz, 1 H), 3.11 (dd, J = 4.0, 13.5 Hz, 1 H), 4.18 (dd, J = 7.0, 9.0 Hz, 1 H), 4.32 (dd, J = 8.5, 8.5 Hz, 1 H), 4.63 (dddd, J = 4.0, 8.0, 9.0, 11.0 Hz, 1 H), 5.29 (d, J = 10.5 Hz, 1 H), 5.44 (d, J = 17.0 Hz, 1 H), 5.77 (q, J = 2.0 Hz, 1 H), 6.37 (dd, J = 10.5, 17.0 Hz, 1 H), 7.14–7.15 (m, 2 H), 7.24–7.27 (m, 1 H), 7.30–7.33 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 5.2, 39.2, 58.1, 68.3, 75.8, 98.0, 111.8, 117.2, 127.3, 129.1, 129.2, 133.3, 135.9, 141.9, 155.8. IR (thin film): 3406 (br s), 3017 (w), 1752 (s), 1498 (w), 1405 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C17H18NO2 [M + H]+: 268.1332; found: 268.1328. Compounds 4d (142 mg, 41%), E-5d (40 mg, 12%), and Z-5d (66 mg, 19%) were obtained from allenamide 6c (291 mg) according to the general procedure. Compound 4d: pale yellow oil; Rf = 0.45 (hexane–EtOAc = 2:1); [α]D 25 –70.1 (c 1.10, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.76 (t, J = 2.5 Hz, 3 H), 3.05 (ABMNX3, J AM = J MX = 2.5 Hz, J BM = 3.5 Hz, J MN = 18.5 Hz, 1 H), 3.28 (ABMNX3, J NX = J AN = J BN = 2.5 Hz, J MN = 18.5 Hz, 1 H), 4.17 (dd, J = 5.0, 9.0 Hz, 1 H), 4.40 (d, J = 9.0 Hz, 1 H), 4.42 (d, J = 6.0 Hz, 1 H), 4.77 (ddd, J = 5.0, 6.5, 11.5 Hz, 1 H), 5.05 (ABMN, J AM = J AN = 3.0 Hz, J AB = 10.5 Hz, 1H), 5.31 (ABMN, J BN = 3.0 Hz, J BM = 3.5 Hz, J AB = 10.5 Hz, 1 H), 7.19–7.20 (m, 4 H), 7.23–7.26 (m, 2 H), 7.29–7.34 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 3.7, 21.7, 53.5, 59.4, 65.8, 74.3, 78.5, 84.6, 105.5, 127.3, 127.6, 128.5, 128.9 (2 C), 129.0, 139.4, 140.7, 156.2, 205.2. IR (thin film): 3397 (br s), 3017 (w), 2920 (w), 1750 (s), 1495 (w), 1452 (w), 1405 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C23H22NO2 [M + H]+: 344.1645; found: 344.1636. Compound E-5d: yellow solid, mp 52–53 °C; Rf = 0.40 (hexane–EtOAc = 2:1); [α]D 25 1.5 (c 0.72, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.96 (d, J = 2.5 Hz, 3 H), 4.14 (d, J = 8.0 Hz, 1 H), 4.20 (dd, J = 5.0, 9.0 Hz, 1 H), 4.39 (dd, J = 9.0, 9.0 Hz, 1 H), 4.93 (ddd, J = 5.0, 8.5, 8.5 Hz, 1 H), 5.28 (d, J = 10.0 Hz, 1 H), 5.30 (d, J = 17.5 Hz, 1 H), 5.33 (m, 1 H), 6.48 (dd, J = 11.0, 17.5 Hz, 1 H), 7.15–7.32 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 5.0, 55.6, 59.1, 66.3, 75.1, 96.7, 113.4, 116.9, 127.4, 127.7, 128.4 (2 C), 128.8, 129.3, 130.0, 139.8, 140.4, 141.6, 156.7. IR (thin film): 3398 (br s), 3018 (w), 1751 (s), 1495 (w), 1453 (w), 1403 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C23H22NO2 [M + H]+: 344.1645; found: 344.1639. Compound Z-5d: yellow solid, mp 54–55 °C; Rf = 0.38 (hexane–EtOAc = 2:1); [α]D 25 –82.0 (c 0.76, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 2.12 (d, J = 2.5 Hz, 3 H), 4.11 (dd, J = 7.0, 9.0 Hz, 1 H), 4.15 (d, J = 10.0 Hz, 1 H), 4.35 (dd, J = 9.0 Hz, 9.0 Hz, 1 H), 5.05 (d, J = 11.0 Hz, 5.25–5.30 (m, 2 H), 5.41 (ddd, J = 7.0, 8.5, 10.0 Hz, 1 H), 5.82 (dd, J = 10.5, 17.0 Hz, 1 H), 7.14–7.31 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 5.2, 56.7, 58.8, 67.5, 76.2, 97.6, 111.3, 116.6, 127.3, 127.6, 128.0, 128.3 (2 C), 129.3, 133.0, 140.5, 140.7, 143.1, 156.3. IR (thin film): 3375 (br s), 3018 (w), 1753 (s), 1641 (w), 1494 (w), 1403 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C23H22NO2 [M + H]+: 344.1645; found: 344.1639. Compound E-5e (37 mg, 13%) and Z-5e (63 mg, 22%) were obtained from allenamide 6c (206 mg) according to the general procedure. Compound E-5e: yellow solid, mp 57–58 °C; Rf = 0.40 (hexane–EtOAc = 2:1); [α]D 25 19.8 (c 0.44, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.19 (d, J = 8.5 Hz, 1 H), 4.22 (dd, J = 5.0, 9.0 Hz, 1 H), 4.42 (dd, J = 9.0, 9.0 Hz, 1 H), 4.99 (ddd, J = 5.0, 8.5, 8.5 Hz, 1 H), 5.36 (d, J = 11.0 Hz, 1 H), 5.41 (d, J = 17.5 Hz, 1 H), 5.60 (s, 1 H), 6.55 (dd, J = 11.0, 17.5 Hz, 1 H), 7.17–7.20 (m, 3 H), 7.23–7.28 (m, 6 H), 7.31–7.34 (m, 4 H), 7.37–7.39 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 55.7, 59.3, 66.4, 84.8, 99.4, 112.0, 118.0, 123.3, 127.5, 127.7, 128.4, 128.5 (2 C), 128.7, 128.9, 129.3, 130.1, 131.5, 139.7, 140.3, 142.3, 156.6. IR (thin film): 3424 (br s), 3017 (w), 2920 (w), 1753 (s), 1599 (w), 1490 (w), 1453 (m), 1402 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C28H24NO2 [M + H]+: 406.1802; found: 406.1794. Compound Z-5e: yellow solid, mp 65–66 °C; Rf = 0.36 (hexane–EtOAc = 2:1); [α]D 25 –100.4 (c 0.53, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.15 (dd, J = 6.5, 9.0 Hz, 1 H), 4.20 (d, J = 10.0 Hz, 1 H), 4.40 (dd, J = 9.0, 9.0 Hz, 1 H), 5.13 (d, J = 10.5 Hz, 1 H), 5.37 (d, J = 17.0 Hz, 1 H), 5.49–5.54 (m, 2 H), 5.91 (dd, J = 10.5, 17.0 Hz, 1 H), 7.16–7.21 (m, 4 H), 7.24–7.29 (m, 6 H0, 7.38–7.40 (m, 3 H), 7.47–7.50 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 56.8, 59.1, 67.5, 85.9, 100.4, 110.3, 117.4, 123.1, 127.4, 127.6, 128.0, 128.3, 128.4, 128.8, 129.2, 129.4, 131.7, 133.0, 140.4, 140.6, 144.0, 156.2. IR (thin film): 3398 (br s), 3019 (w), 1753 (s), 1490 (w), 1403 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C28H24NO2 [M + H]+: 406.1802; found: 406.1795.
  • 16 General Procedures for the Diels–Alder Reaction of (Z)-3-Amidodienynes To a solution of diene Z-5 (1.0 equiv) in toluene (3 mL) in a sealed tube was added 8 (10.0 equiv) and BHT (2.0 equiv) at rt, and the reaction vessel was well sealed and heated to 130 °C overnight. After cooling to rt, the reaction mixture was concentrated under reduced pressure, and the resulting crude residue was directly used for crude 1H NMR analysis to determine the isomer ratio by comparing the integrations of C–H proton adjacent to either the triple bond or the carbonyl group. Then the mixture was purified via silica gel flash column chromatography (gradient eluent: EtOAc in hexane) to afford the desired Diels–Alder product 9.
  • 17 Characterization of the Diels–Alder Products 9 Compound 9a was obtained (15 mg, 58%) on a 20.0 mg scale reaction as a pale yellow oil according to the general procedure; Rf = 0.20 (hexane–EtOAc = 2:1); [α]D 25 182.7 (c 0.33, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.89 (d, J = 7.0 Hz, 3 H), 0.91 (d, J = 7.0 Hz, 3 H), 1.62–1.68 (m, 1 H), 1.73 (d, J = 2.5 Hz, 3 H), 2.01–2.08 (m, 2 H), 2.10–2.18 (m, 1 H), 2.26 (s, 3 H), 2.30–2.37 (m, 1 H), 2.96 (ddd, J = 3.0, 10.0, 10.0 Hz, 1 H), 3.57–3.60 (m, 1 H), 4.06–4.13 (m, 2 H), 4.29 (dd, J = 8.5, 8.5 Hz, 1 H), 5.84 (m, 1H). 13C NMR (125 MHz, CDCl3): δ = 3.7, 14.9, 18.0, 23.3, 23.6, 29.1, 29.3 (2 C), 53.4, 59.1, 63.1, 78.3, 123.7, 130.8, 157.3, 209.6. IR (thin film): 3404 (br s), 2963 (w), 2922 (w), 1746 (s), 1712 (m), 1670 (w), 1485(w), 1411 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C17H24NO3 [M + H]+: 290.1751; found: 290.1750. Compound 9b was obtained (12 mg, 20%) on a 45.0 mg scale reaction as a pale yellow oil according to the general procedure; Rf = 0.40 (hexane–EtOAc = 1:1); [α]D 25 110.6 (c 1.60, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.88 (d, J = 7.0 Hz, 3 H), 0.91 (d, J = 7.5 Hz, 3 H), 1.65–1.72 (m, 1 H), 2.04–2.18 (m, 3 H), 2.08 (d, J = 3.0 Hz, 1 H), 2.26 (s, 3 H), 2.31–2.38 (m, 1 H), 3.00 (ddd, J = 3.5, 7.0, 10.0 Hz, 1 H), 3.68–3.70 (m, 1 H), 4.06–4.12 (m, 2 H), 4.29 (dd, J = 8.5, 8.5 Hz, 1 H), 5.85–5.87 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 1.2, 14.9, 18.0, 23.1, 23.4, 28.9, 29.0, 53.0, 59.0, 63.0, 70.8, 82.4, 124.1, 129.6, 157.1, 208.8. IR (thin film): 3302 (br s), 2963 (w), 1746 (s), 1712 (m), 1671 (w), 1485 (w), 1411 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C16H22NO3 [M + H]+: 276.1594; found: 276.1594. Compounds 9c (67 mg, 59%) and 9′c were obtained on a 90 mg scale reaction according to the general procedure. Compound 9c: Rf = 0.40 (hexane–EtOAc = 1:1); [α]D 25 40.0 (c 0.77, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.64–1.71 (m, 1 H), 1.75 (d, J = 2.0 Hz, 3 H), 2.02–2.16 (m, 2 H), 2.26 (s, 3 H), 2.28–2.35 (m, 1 H), 2.70 (dd, J = 4.0, 14.0 Hz, 1 H), 2.94 (ddd, J = 3.5, 6.5, 9.0 Hz, 1 H), 3.19 (dd, J = 4.5, 13.5 Hz, 1 H), 3.61–3.63 (m, 1 H), 4.09 (dd, J = 5.0, 8.5 Hz, 1 H), 4.28 (dd, J = 8.5, 8.5 Hz, 1 H), 4.33–4.39 (m, 1 H), 5.85 (ddd, J = 2.0, 4.0, 4.0 Hz, 1 H), 7.16–7.21 (m, 2 H), 7.24–2.27 (m, 1 H), 7.31–7.34 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 3.8, 22.8, 23.3, 28.8, 29.3, 39.4, 53.3, 56.5, 67.0, 77.3, 78.5, 123.8, 127.3, 129.0, 129.5, 130.7, 136.2, 156.6, 209.2. IR (thin film): 3417 (br s), 2921 (w), 2850 (w), 1750 (s), 1711 (m), 1671 (w), 1497 (w), 1480 (w), 1454 (w), 1407 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C21H24NO3 [M + H]+: 338.1751; found: 338.1749. Compound 9′c: Rf = 0.35 (hexane–EtOAc = 1:1); [a]D 25 –110.4 (c 0.45, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.77 (d, J = 2.5 Hz, 3 H), 1.80–1.86 (m, 1 H), 2.02 (dd, J = 6.0, 14.0 Hz, 1 H), 2.20–2.27 (m, 1 H), 2.24 (s, 3 H), 2.34 (td, J = 5.0, 14.0 Hz, 1 H), 2.61 (dd, J = 11.0, 13.5 Hz, 1 H), 2.77 (ddd, J = 2.5, 5.0, 12.0 Hz, 1 H), 3.32 (dd, J = 3.5, 13.5 Hz, 1 H), 3.76 (s, 1 H), 4.05 (dd, J = 6.0, 8.5 Hz, 1 H), 4.22 (t, J = 8.5 Hz, 1 H), 5.52–5.58 (m, 1 H), 5,90 (dd, J = 2.5, 5.0 Hz, 1 H), 7.15–7.17 (m, 2 H), 7.24–7.27 (m, 1 H), 7.30–7.33 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 3.8, 18.7, 24.5, 28.2, 31.5, 39.3, 51.9, 58.7, 67.7, 76.8, 80.0, 127.3, 128.9, 129.1 (2 C), 131.1, 135.9, 157.0, 207.6; IR (thin film): 3018 (w), 1745 (m), 1711 (m), 1671 (w), 1407 (m), 1216 (s) cm–1. Compound 9d was obtained (26 mg, 72%) on a 30.0 mg scale reaction as a yellow oil according to the general procedure; Rf = 0.30 (hexane–EtOAc = 1:1); [α]D 25 14.8 (c 0.93, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.91 (dddd, J = 5.5, 11.0, 11.0, 13.0 Hz, 1 H), 1.70–1.74 (m, 1 H), 1.75 (d, J = 2.5 Hz, 3 H), 1.78–1.85 (m, 1 H), 2.06–2.15 (m, 1 H), 2.19 (s, 3 H), 2.72 (ddd, J = 3.0, 9.0, 12.0 Hz, 1 H), 3.20–3.22 (m, 1 H), 4.07 (dd, J = 5.0, 9.0 Hz, 1 H), 4.25 (d, J = 9.0 Hz, 1 H), 4.39 (dd, J = 9.0 Hz, 1 H), 4.88 (ddd, J = 5.0, 9.0, 9.0 Hz, 1 H), 5.57 (ddd, J = 2.5, 2.5, 5.0 Hz, 1 H), 7.16–7.33 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 3.7, 23.5, 23.9, 29.4, 29.7, 53.4, 56.3, 57.8, 66.6, 76.8, 78.7, 126.4, 127.3, 127.5, 128.3, 128.8, 128.9, 129.2, 130.6, 140.3, 141.2, 157.5, 209.5. IR (thin film): 3403 (br s), 3061 (w), 3029 (w), 2921 (w), 1751 (s), 1711 (m), 1674 (w), 1600 (w), 1494 (w), 1477 (w), 1452 (w), 1408 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C27H28NO3 [M + H]+: 414.2064; found: 414.2063. Compound 9e was obtained (17 mg, 61%) on a 24.0 mg scale reaction as a yellow solid according to the general procedure, mp 82–83 °C; Rf = 0.35 (hexane–EtOAc = 1:1); [α]D 25 50.8 (c 0.87, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.92–1.00 (m, 1 H), 1.74–1.79 (m, 1 H), 1.83–1.88 (m, 1 H), 2.11–2.19 (m, 1 H), 2.24 (s, 3 H), 2.85 (ddd, J = 3.0, 9.0, 12.0 Hz, 1 H), 3.49–3.51 (m, 1 H), 4.05 (dd, J = 5.0, 9.0 Hz, 1 H), 4.25 (d, J = 9.0 Hz, 1 H), 4.38 (dd, J = 9.0, 9.0 Hz, 1 H), 4.94 (ddd, J = 5.0, 9.0, 9.0 Hz, 1 H), 5.63 (ddd, J = 2.5, 5.0, 5.0 Hz, 1 H), 7.18–7.33 (m, 13 H), 7.36–7.38 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 23.5, 23.9, 29.6, 30.5, 53.0, 56.6, 57.9, 66.7, 83.2, 87.1, 122.8, 127.1, 127.4, 127.5, 128.2, 128.4, 128.5, 128.8, 128.9, 129.2, 130.1, 131.8, 140.3, 141.3, 157.6, 209.2. IR (thin film): 3405 (br s), 3059 (w), 2923 (w), 1754 (s), 1713 (m), 1675 (w), 1599 (w), 1491 (w), 1452 (w), 1408 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C32H30NO3 [M + H]+: 476.2220; found: 476.2220. Compound 9f was obtained (27 mg, 72%) on a 30.0 mg scale reaction as a yellow solid according to the general procedure, mp 82–83 °C; Rf = 0.40 (hexane–EtOAc = 2:1); [α]D 25 6.9 (c 0.71, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.94 (ddd, J = 5.5, 10.5, 10.5 Hz, 1 H), 1.65 (d, J = 2.5 Hz, 3 H), 1.68–1.70 (m, 1 H), 1.78–1.84 (m, 1 H), 2.14–2.22 (m, 1 H), 3.39–3.41 (m, 1 H), 3.56 (ddd, J = 2.5, 9.0, 12.0 Hz, 1 H), 4.07 (dd, J = 4.5, 9.0 Hz, 1 H), 4.23 (d, J = 9.5 Hz, 1 H), 4.40 (dd, J = 9.0, 9.0 Hz, 1 H), 4.91 (ddd, J = 4.5, 9.0, 9.0 Hz, 1 H), 5.61 (ddd, J = 2.5, 2.5, 5.0 Hz, 1 H), 7.17–7.20 (m, 1 H), 7.23–7.35 (m, 9 H), 7.62 (d, J = 8.5 Hz, 2 H), 7.81 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 3.7, 24.1, 25.0, 30.6, 48.0, 56.8, 57.9, 66.9, 76.6, 79.2, 126.9, 127.4, 127.5, 128.3, 128.7, 128.8, 129.0, 129.3, 130.2, 130.9, 132.2, 135.0, 140.5, 141.3, 157.7, 200.5. IR (thin film): 3398 (br s), 2922 (w), 1752 (s), 1681 (m), 1585 (m), 1494 (w), 1452 (w), 1409 (m) cm–1. HRMS (QTOF MS ESI): m/e calcd for C32H29BrNO3 [M + H]+: 554.1325; found: 554.1329.
  • 18 Procedure of Pauson–Khand Reaction To a solution of E-5a (44 mg, 0.2 mmol) in toluene (4.0 mL) was added Co2(CO)8 (82 mg, 0.24 mmol) under Ar. The mixture was stirred at rt until the starting material was completely consumed as indicated by TLC (ca 3 h), then norbornene (56.5 mg, 0.6 mmol) and NMO (117 mg, 1.0 equiv) were added successively, and the mixture was further stirred at 110 °C overnight. The reaction mixture was concentrated under reduced pressure to afford a crude mixture which was further purified via silica gel flash column chromatography (gradient eluent: EtOAc in hexane) to afford product 11 (19 mg, 28%) as a pale yellow oil. Rf  = 0.40 (hexane–EtOAc = 2:1). 1H NMR (500 MHz, CDCl3): δ = 0.89 (d, J = 7.0 Hz, 3 H), 0.96 (d, J = 7.0 Hz, 3 H), 1.00–1.01 (m, 1 H), 1.02 (m, 1 H), 1.25–1.36 (m, 2 H), 1.57–1.64 (m, 1 H0, 1.67–1.74 (m, 1 H), 1.99–2.07 (m, 1 H), 2.05 (s, 3 H), 2.24 (d, J = 5.5 Hz, 1 H), 2.33 (dd, J = 4.0, 15.0 Hz, 1 H), 2.44 (dd, J = 5.0, 5.0 Hz, 1 H), 2.57 (d, J = 5.0 Hz, 1 H), 4.04 (dddd, J = 2.0, 4.0, 5.5, 5.5 Hz, 1 H), 4.19 (dd, J = 5.5, 8.5 Hz, 1 H), 4.36 (dd, J = 9.0, 9.0 Hz, 1 H), 5.28–5.34 (m, 2 H), 6.05 (dd, J = 11.0, 17.5 Hz, 0.5 H), 6.08 J = 10.5, 17.5 Hz, 0.5 H), 6.12 (d, J = 8.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.8/14.9, 18.1, 18.2, 28.7, 28.9, 29.3, 31.8, 38.0, 39.2, 53.5/53.8, 54.2/54.3, 60.9/61.0, 63.5/63.5, 117.2/117.3, 122.2, 129.9/130.0, 135.4, 138.8/138.9, 157.3, 175.7, 208.2/208.5. HRMS (QTOF MS ESI): m/e calcd for C21H28NO3 [M + H]+: 359.2330; found: 359.2334.