Synlett
DOI: 10.1055/s-0036-1590978
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of N-Arylsulfonamides by a Copper-Catalyzed Reaction of Chloramine-T and Arylboronic Acids at Room Temperature

Banlai Ouyang*a, Deming Liua, Kejian Xiaa, Yanxia Zhenga, Hongxin Meia, Guanyinsheng Qiu*b
  • aDepartment of Chemistry, Nanchang Normal University, 889 Ruixiang Road, Nanchang 330032, P. R. of China   Email: nsouyang@outlook.com
  • bCollege of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. of China   Email: 11110220028@fudan.edu.cn
This work was supported by the National Natural Science Foundation of China (No. 21502069), the Science and Technology Project of the Education Department of Jiangxi Province (No. GJJ161236), and the Key Discipline Project of Nanchang Normal University (No. NSXK20141003).
Further Information

Publication History

Received: 14 June 2017

Accepted after revision: 04 August 2017

Publication Date:
29 August 2017 (eFirst)

Abstract

A copper-catalyzed Chan–Lam-coupling-like reaction of a (het)arylboronic acid and chloramine-T (or a related compound) has been developed for the synthesis of N-arylsulfonamides at room temperature in moderate to good yields, with good tolerance of functional groups. In this process, it is believed that chloramine-T serves as an electrophile.

Supporting Information

 
  • References and Notes

    • 2a Minakata S. Yoneda Y. Oderaotoshi Y. Komatsu M. Org. Lett. 2006; 8: 967
    • 2b Wu X.-L. Wang G.-W. Eur. J. Org. Chem. 2008; 2008: 6239
    • 2c Hayakawa J. Kuzuhara M. Minakata S. Org. Biomol. Chem. 2010; 8: 1424
    • 2d Martínez C. Muñiz K. Adv. Synth. Catal. 2014; 356: 205
    • 3a Li G. Chang H.-T. Sharpless KB. Angew. Chem. Int. Ed. 1996; 35: 451
    • 3b Rubin AE. Sharpless KB. Angew. Chem. Int. Ed. 1997; 36: 2637
    • 3c Sugimoto H. Mikami A. Kai K. Sajith PK. Shiota Y. Yoshizawa K. Asano K. Suzuki T. Itoh S. Inorg. Chem. 2015; 54: 7073
    • 4a Ando T. Minakata S. Ryu I. Komatsu M. Tetrahedron Lett. 1998; 39: 309
    • 4b Ando T. Kano D. Minakata S. Ryu I. Komatsu M. Tetrahedron 1998; 54: 13485
    • 4c Jeong JU. Tao B. Sagasser I. Henniges H. Sharpless KB. J. Am. Chem. Soc. 1998; 120: 6844
    • 4d Antunes AM. M. Marto SJ. L. Branco PS. Prabhakar S. Lobo AM. Chem. Commun. 2001; 405
    • 4e Kano D. Minakata S. Komatsu M. J. Chem. Soc., Perkin Trans. 1 2001; 3186
    • 4f Kumar GD. Baskaran S. Chem. Commun. 2004; 1026
    • 4g Vyas R. Gao G.-Y. Harden JD. Zhang XP. Org. Lett. 2004; 6: 1907
    • 4h Minakata S. Kano D. Oderaotoshi Y. Komatsu M. Angew. Chem. Int. Ed. 2004; 43: 79
    • 4i Gao G.-Y. Harden JD. Zhang XP. Org. Lett. 2005; 7: 3191
    • 5a Albone DP. Aujla PS. Taylor PC. J. Org. Chem. 1998; 63: 9569
    • 5b Albone DP. Challenger S. Derrick AM. Fillery SM. Irwin JL. Parsons CM. Takada H. Taylor PC. Wilson DJ. Org. Biomol. Chem. 2005; 3: 107
    • 5c Baumann T. Bachle M. Brase S. Org. Lett. 2006; 8: 3797
    • 5d Bhuyan R. Nicholas KM. Org. Lett. 2007; 9: 3957
    • 5e Harden JD. Ruppel JV. Gao G.-Y. Zhang XP. Chem. Commun. 2007; 4644
    • 5f Takeda Y. Hayakawa J. Yano K. Minakata S. Chem. Lett. 2012; 41: 1672
  • 6 Jigajinni VB. Pelter A. Smith K. Tetrahedron Lett. 1978; 19: 181
    • 7a Minakata S. Kano D. Oderaotoshi Y. Komatsu M. Org. Lett. 2002; 4: 2097
    • 7b Ganesh V. Sureshkumar D. Chanda D. Chandrasekaran S. Chem. Eur. J. 2012; 18: 12498
    • 8a Kawano T. Hirano K. Satoh T. Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 8b Liu X.-Y. Gao P. Shen Y.-W. Lianga Y.-M. Adv. Synth. Catal. 2011; 353: 3157
    • 9a Scozzafava A. Owa T. Mastrolorenzo A. Supuran CT. Curr. Med. Chem. 2003; 10: 925
    • 9b Eschenburg S. Priestman MA. Abdul-Latif FA. Delachaume C. Fassy F. Schönbrunn E. J. Biol. Chem. 2005; 280: 14070
    • 9c Stanton MG. Stauffer SR. Gregro AR. Steinbeiser M. Nantermet P. Sankaranarayanan S. Price EA. Wu G. Crouthamel M.-C. Ellis J. Lai M.-T. Espeseth AS. Shi X.-P. Jin L. Colussi D. Pietrak B. Huang Q. Xu M. Simon AJ. Graham SL. Vacca JP. Selnick H. J. Med. Chem. 2007; 50: 3431
    • 9d Basanagouda M. Shivashankar K. Kulkarni MV. Rasal VP. Patel H. Mutha SS. Mohite AA. Eur. J. Med. Chem. 2010; 45: 1151
    • 9e Chohan ZH. Youssoufi MH. Jarrahpour A. Ben Hadda T. Eur. J. Med. Chem. 2010; 45: 1189
    • 10a Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 10b Ma D. Cai Q. Acc. Chem. Res. 2008; 41: 1450
    • 10c Surry DS. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 10d Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 10e Qiao J. Lam P. Synthesis 2011; 829
    • 10f Louillat ML. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
  • 11 Chan DM. T. Monaco KL. Wang R.-P. Winters MP. Tetrahedron Lett. 1998; 39: 2933
  • 12 Lam PY. S. Vincent G. Clark CG. Deudon S. Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
  • 13 Nasrollahzadeh M. Ehsani A. Maham M. Synlett 2014; 25: 505
  • 14 Moon SY. Nam J. Rathwell K. Kim W.-S. Org. Lett. 2014; 16: 338
    • 15a King AE. Brunold TC. Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044
    • 15b King AE. Huffman LM. Casitas A. Costas M. Ribas X. Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 15c Rao DN. Rasheed S. Kumar KA. Reddy AS. Das P. Adv. Synth. Catal. 2016; 358: 2126
  • 16 Reaction of Chloramines 2 with Arylboronic Acids 1; General Procedure A test tube equipped with a stirrer bar was charged with the appropriate chloramine 2 (0.3 mmol), arylboronic acid 1 (0.36 mmol), and t-BuOK (50.5 mg, 0.45 mmol). A solution of Cu(OAc)2 (2.7 mg, 0.015 mmol) in EtOH (1.5 mL) was then added, and the mixture was stirred under air at RT for 12 h. The heterogeneous mixture was then diluted with EtOAc (1 mL), and the resulting mixture was filtered through a pad of silica gel, which was washed with EtOAc (3 mL). The organic solutions were combined, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, PE–EtOAc). 4-Methyl-N-phenylbenzenesulfonamide (3a) White solid; yield: 46 mg (62%); mp 100–101 °C. 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 8.3 Hz, 2 H), 7.22 (t, J = 7.9 Hz, 4 H), 7.09 (dd, J = 9.4, 8.3 Hz, 3 H), 6.97 (s, 1 H), 2.37 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.87, 136.58, 136.14, 129.65, 129.30, 127.29, 125.30, 121.57, 21.52.