Synlett 2017; 28(19): 2517-2524
DOI: 10.1055/s-0036-1590979
synpacts
© Georg Thieme Verlag Stuttgart · New York

New Strategy for Forging Contiguous Quaternary Carbon Centers via H2O2-Mediated Ring Contraction

Jiadong Hua, Xin Yub, Weiqing Xie*a, c
  • aShaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. of China   Email: xiewq@nwafu.edu.cn
  • bInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, P. R. of China
  • cKey Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. of China
We are grateful for financial support from the National Natural Science Foundation of China (grants. 21722206, 21672171, 21372239), the Scientific Research Foundation of Northwest A&F University (grants. Z111021501, Z109021600). Financial support from the Open Fund of State Key Laboratory of Bioorganic & Natural Products is also acknowledged.
Further Information

Publication History

Received: 25 July 2017

Accepted after revision: 24 August 2017

Publication Date:
12 September 2017 (eFirst)

Abstract

Stereospecific construction of contiguous quaternary carbon centers constitutes a major challenge in natural product synthesis. A general protocol that enables stereospecific construction of all stereoisomers of such a moiety remains elusive. In this article, we will discuss the oxidative ring contraction of all-substituted cyclic α-formyl ketones mediated by H2O2, which provides a facile access to the stereospecific construction of contiguous quaternary carbon centers.

 
  • References

    • 1a Kubo M. Okada C. Huang J.-M. Harada K. Hioki H. Fukuyama Y. Org. Lett. 2009; 11: 5190
    • 1b Massiot G. Thepenier P. Jacquier MJ. Le Men-Olivier L. Delaude C. Heterocycles 1989; 29: 1435
    • 2a Li SH. Wang J. Niu XM. Shen YH. Zhang HJ. Sun HD. Li ML. Tian QE. Lu Y. Cao P. Zheng QT. Org. Lett. 2004; 6: 4327
    • 2b Goto K. Tomita M. Okamoto Y. Kikuchi T. Osaki K. Nishikawa M. Kamiya K. Sasaki Y. Matoba K. Proc. Jpn. Acad. 1967; 43: 499
    • 3a Numata A. Takahashi C. Ito Y. Takada T. Kawai K. Usami Y. Matsumura E. Imachi M. Ito T. Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
    • 3b Hayashi H. Matsumoto H. Akiyama K. Biosci., Biotechnol., Biochem. 2004; 68: 753
    • 3c Jadulco R. Edrada RA. Ebel R. Berg A. Schaumann K. Wray V. Steube K. Proksch P. J. Nat. Prod. 2004; 67: 78
    • 3d Dalsgaard PW. Blunt JW. Munro MH. G. Frisvad JC. Christophersen C. J. Nat. Prod. 2005; 68: 258
    • 3e Verbitski SM. Mayne CL. Davis RA. Concepcion GP. Ireland CM. J. Org. Chem. 2002; 67: 7124
    • 3f Dumdei EJ. Kubanek J. Coleman JE. Pika J. Andersen RJ. Steiner JR. Clardy J. Can. J. Chem. 1997; 75: 773
    • 3g Akihiko M. Shunji Y. Mitsuru N. Shûichi H. Chem. Lett. 1982; 11: 463
    • 3h Matsuo A. Yuki S. Nakayama M. J. Chem. Soc., Perkin Trans. 1 1986; 701
    • 4a Peterson EA. Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11943
    • 4b Steven A. Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
    • 4c Long R. Huang J. Gong JX. Yang Z. Nat. Prod. Rep. 2015; 32: 1584
    • 4d Büschleb M. Dorich S. Hanessian S. Tao D. Schenthal KB. Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
    • 5a Zi W. Xie W. Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 5b Teng MX. Zi WW. Ma DW. Angew. Chem. Int. Ed. 2014; 53: 1814
  • 6 Wu H. Xue F. Xiao X. Qin Y. J. Am. Chem. Soc. 2010; 132: 14052

    • For selected reviews, see:
    • 7a Martín Castro AM. Chem. Rev. 2004; 104: 2939
    • 7b Ilardi EA. Stivala CE. Zakarian A. Chem. Soc. Rev. 2009; 38: 3133

    • For selected examples, see:
    • 7c Gu Z. Herrmann AT. Stivala CE. Zakarian A. Synlett 2010; 1717
    • 7d Shimizu Y. Shi S.-L. Usuda H. Kanai M. Shibasaki M. Angew. Chem. Int. Ed. 2010; 49: 1103
    • 7e Trost BM. Cramer N. Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 7f Trost BM. Malhotra S. Chan WH. J. Am. Chem. Soc. 2011; 133: 7328
    • 7g Trost BM. Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176
    • 7h Khan A. Yang L. Xu J. Jin LY. Zhang YJ. Angew. Chem. Int. Ed. 2014; 53: 11257
    • 7i Ohmatsu K. Imagawa N. Ooi T. Nat. Chem. 2014; 6: 47
  • 8 Barton DH. R. Charpiot B. Ingold KU. Johnston LJ. Motherwell WB. Scaiano JC. Stanforth S. J. Am. Chem. Soc. 1985; 107: 3607
    • 10a Choi T. Cizmeciyan D. Khan SI. Garcia-Garibay MA. J. Am. Chem. Soc. 1995; 117: 12893
    • 10b Choi T. Peterfy K. Khan SI. Garcia-Garibay MA. J. Am. Chem. Soc. 1996; 118: 12477
    • 10c Peterfy K. Garcia-Garibay MA. J. Am. Chem. Soc. 1998; 120: 4540
    • 10d Mortko CJ. Garcia-Garibay MA. J. Am. Chem. Soc. 2005; 127: 7994
    • 10e Hernandez-Linares MG. Guerrero-Luna G. Perez-Estrada S. Ellison M. Ortin MM. Garcia-Garibay MA. J. Am. Chem. Soc. 2015; 137: 1679
  • 11 Xie WQ. Wang HX. Fan F. Tian JS. Zuo ZW. Zi WW. Gao K. Ma DW. Tetrahedron Lett. 2013; 54: 4392
  • 12 Yu X. Hu J. Shen Z. Zhang H. Gao J.-M. Xie W. Angew. Chem. Int. Ed. 2017; 56: 350
    • 13a Friess SL. Soloway AH. J. Am. Chem. Soc. 1951; 73: 3968
    • 13b Hawthorne MF. Emmons WD. J. Am. Chem. Soc. 1958; 80: 6398
    • 13c Ogata Y. Sawaki Y. J. Org. Chem. 1969; 34: 3985
    • 13d Palmer BW. Fry A. J. Am. Chem. Soc. 1970; 92: 2580
    • 13e Ogata Y. Sawaki Y. J. Am. Chem. Soc. 1972; 94: 4189
    • 13f Winnik MA. Stoute V. Can. J. Chem. 1973; 51: 2788
    • 13g Winnik MA. Stoute V. Fitzgerald P. J. Am. Chem. Soc. 1974; 96: 1977
    • 13h Itoh Y. Yamanaka M. Mikami K. J. Org. Chem. 2013; 78: 146
  • 14 Yu X. Liu Z. Xia Z. Shen Z. Pan X. Zhang H. Xie W. RSC Adv. 2014; 4: 53397
  • 15 Payne GB. J. Org. Chem. 1961; 26: 4793
    • 16a Galteri M. Lewis P. Middleton S. Stock L. Aust. J. Chem. 1980; 33: 101
    • 16b Middleton S. Stock L. Aust. J. Chem. 1980; 33: 2467
    • 17a Mohr JT. Behenna DC. Harned AM. Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 17b Trost BM. Xu J. Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 17c Shen Z. Pan X. Lai Y. Hu J. Wan X. Li X. Zhang H. Xie W. Chem. Sci. 2015; 6: 6986
    • 18a Dowd P. Choi S.-C. Tetrahedron 1989; 45: 77
    • 18b Cocker W. Gordon RL. Shannon PV. R. J. Chem. Res., Synop. 1985; 6: 172