Synlett 2018; 29(06): 689-698
DOI: 10.1055/s-0036-1591934
synpacts
© Georg Thieme Verlag Stuttgart · New York

Chiral Mechanically Interlocked Molecules – Applications of Rotaxanes, Catenanes and Molecular Knots in Stereoselective Chemosensing and Catalysis

Noel Pairault
Institute of Organic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany   Email: jochen.niemeyer@uni-due.de
,
Institute of Organic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany   Email: jochen.niemeyer@uni-due.de
› Author Affiliations
Fonds der Chemischen Industrie (Liebig Fellowship for J.N.) (Li 193/02)
. German Research Foundation DFG (NI 1273/2-1).
Further Information

Publication History

Received: 22 December 2017

Accepted after revision: 19 January 2018

Publication Date:
26 February 2018 (online)

Abstract

Interlocked molecules, such as rotaxanes, catenanes, and molecular knots, offer conceptually new possibilities for the generation of chiral chemosensors and catalysts. Due to the presence of the mechanical or topological bond, interlocked molecules can be used to design functional systems with unprecedented features, such as switchability and deep binding cavities. In addition, classical elements of chirality can be supplemented with mechanical or topological chirality, which have so far only scarcely been employed as sources of chirality for stereoselective applications. This minireview discusses recent examples in this emerging area, showing that the application of chiral interlocked molecules in sensing and catalysis offers many fascinating opportunities for future research.

1 Introduction

2 Interlocked Molecules with Chiral Subcomponents

2.1 Point Chirality

2.2 Axial Chirality

3 Mechanically Chiral Interlocked Molecules

4 Topologically Chiral Interlocked Molecules

5 Outlook

 
  • References

  • 2 Gil-Ramírez G. Leigh DA. Stephens AJ. Angew. Chem. Int. Ed. 2015; 54: 6110
  • 3 Xue M. Yang Y. Chi X. Yan X. Huang F. Chem. Rev. 2015; 115: 7398
  • 4 Fielden SD. P. Leigh DA. Woltering SL. Angew. Chem. Int. Ed. 2017; 56: 11166
    • 5a Wasserman E. J. Am. Chem. Soc. 1960; 82: 4433
    • 5b Harrison IT. Harrison S. J. Am. Chem. Soc. 1967; 89: 5723
    • 6a Yin Z. Zhang Y. He J. Cheng J.-P. Chem. Commun. 2007; 2599
    • 6b Dichtel WR. Miljanić O. Š. Zhang W. Spruell JM. Patel K. Aprahamian I. Heath JR. Stoddart JF. Acc. Chem. Res. 2008; 41: 1750
    • 6c Crowley JD. Goldup SM. Lee AL. Leigh DA. McBurney RT. Chem. Soc. Rev. 2009; 38: 1530
    • 6d Hanni KD. Leigh DA. Chem. Soc. Rev. 2010; 39: 1240
    • 6e Beves JN. Blight BA. Campbell CJ. Leigh DA. McBurney RT. Angew. Chem. Int. Ed. 2011; 50: 9260
    • 6f Spence GT. Beer PD. Acc. Chem. Res. 2012; 46: 571
    • 7a Feringa BL. Angew. Chem. Int. Ed. 2017; 56: 11060
    • 7b Sauvage J.-P. Angew. Chem. Int. Ed. 2017; 56: 11080
    • 7c Stoddart JF. Angew. Chem. Int. Ed. 2017; 56: 11094
    • 8a Jiménez MC. Dietrich-Buchecker C. Sauvage J.-P. Angew. Chem. Int. Ed. 2000; 39: 3284
    • 8b Bruns CJ. Stoddart JF. Acc. Chem. Res. 2014; 47: 2186
    • 8c Iwaso K. Takashima Y. Harada A. Nat. Chem. 2016; 8: 625
    • 8d Chang J.-C. Tseng S.-H. Lai C.-C. Liu Y.-H. Peng S.-M. Chiu S.-H. Nat. Chem. 2017; 9: 128
    • 9a Arunkumar E. Fu N. Smith BD. Chem. Eur. J. 2006; 12: 4684
    • 9b Peck EM. Battles PM. Rice DR. Roland FM. Norquest KA. Smith BD. Bioconjugate Chem. 2016; 27: 1400
    • 9c Jarvis TS. Collins CG. Dempsey JM. Oliver AG. Smith BD. J. Org. Chem. 2017; 82: 5819
    • 10a Hernandez JV. Kay ER. Leigh DA. Science 2004; 306: 1532
    • 10b Kay ER. Leigh DA. Zerbetto F. Angew. Chem. Int. Ed. 2007; 46: 72
    • 10c Kay ER. Leigh DA. Pure Appl. Chem. 2008; 80: 17
    • 10d Erbas-Cakmak S. Leigh DA. McTernan CT. Nussbaumer AL. Chem. Rev. 2015; 115: 10081
    • 10e Wilson MR. Solà J. Carlone A. Goldup SM. Lebrasseur N. Leigh DA. Nature 2016; 534: 235
  • 11 Pairault N. Barat R. Tranoy-Opalinski I. Renoux B. Thomas M. Papot S. C. R. Chim. 2016; 19: 103
    • 12a Thordarson P. Bijsterveld EJ. A. Rowan AE. Nolte RJ. M. Nature 2003; 424: 915
    • 12b Hidalgo Ramos P. Coumans RG. E. Deutman AB. C. Smits JM. M. de Gelder R. Elemans JA. A. W. Nolte RJ. M. Rowan AE. J. Am. Chem. Soc. 2007; 129: 5699
    • 12c Lewandowski B. Bo GD. Ward JW. Papmeyer M. Kuschel S. Aldegunde MJ. Gramlich PM. E. Heckmann D. Goldup SM. D’Souza DM. Fernandes AE. Leigh DA. Science 2013; 339: 189
    • 13a Neal EA. Goldup SM. Chem. Commun. 2014; 5128
    • 13b Lewis JE. M. Galli M. Goldup SM. Chem. Commun. 2017; 298
    • 14a Frisch HL. Wasserman E. J. Am. Chem. Soc. 1961; 83: 3789
    • 14b Walba DM. Tetrahedron 1985; 41: 3161
    • 14c Olson MA. Botros YY. Stoddart JF. Pure Appl. Chem. 2010; 82: 1569
    • 15a Chambron J.-C. Dietrich-Buchecker C. Sauvage J.-P. Top. Curr. Chem. 1993; 131
    • 15b Barin G. Forgan RS. Stoddart JF. Proc. R. Soc. Math. Phys. Eng. Sci. 2012; 468: 2849
  • 16 Evans NH. Chem. Eur. J. 2018; 24 : in press; DOI: 10.1002/chem.201704149
  • 17 Blanco V. Leigh DA. Marcos V. Morales-Serna JA. Nussbaumer AL. J. Am. Chem. Soc. 2014; 136: 4905
  • 18 Hoekman S. Kitching MO. Leigh DA. Papmeyer M. Roke D. J. Am. Chem. Soc. 2015; 137: 7656
  • 19 Lim JY. C. Marques I. Félix V. Beer PD. J. Am. Chem. Soc. 2017; 139: 12228
  • 20 Lim JY. C. Marques I. Félix V. Beer PD. Angew. Chem. Int. Ed. 2017; 57: 584
  • 21 Mitra R. Thiele M. Octa-Smolin F. Letzel MC. Niemeyer J. Chem. Commun. 2016; 5977
  • 22 Mitra R. Zhu H. Grimme S. Niemeyer J. Angew. Chem. Int. Ed. 2017; 56: 11456
  • 23 Tachibana Y. Kihara N. Takata T. J. Am. Chem. Soc. 2004; 126: 3438
    • 24a Mitchell DK. Sauvage J.-P. Angew. Chem., Int. Ed. Engl. 1988; 27: 930
    • 24b Kaida Y. Okamoto Y. Chambron J.-C. Mitchell DK. Sauvage J.-P. Tetrahedron Lett. 1993; 34: 1019
    • 25a Jäger R. Händel M. Harren J. Vögtle F. Rissanen K. Liebigs Ann. 1996; 1201
    • 25b Yamamoto C. Okamoto Y. Schmidt T. Jäger R. Vögtle F. J. Am. Chem. Soc. 1997; 119: 10547
  • 26 Makita Y. Kihara N. Nakakoji N. Takata T. Inagaki S. Yamamoto C. Okamoto Y. Chem. Lett. 2007; 36: 162
  • 27 Bordoli RJ. Goldup SM. J. Am. Chem. Soc. 2014; 136: 4817
  • 28 Kameta N. Nagawa Y. Karikomi M. Hiratani K. Chem. Commun. 2006; 3714
  • 29 Yerin A. Wilks ES. Moss GP. Harada A. Pure Appl. Chem. 2008; 80: 2041

    • For an example of mechanically chiral pseudorotaxanes without a permanent mechanical bond, see:
    • 30a Li Y. Feng Y. He Y.-M. Chen F. Pan J. Fan Q.-H. Tetrahedron Lett. 2008; 49: 2878
    • 30b Hattori G. Hori T. Miyake Y. Nishibayashi Y. J. Am. Chem. Soc. 2007; 129: 12930
    • 31a Ishiwari F. Nakazono K. Koyama Y. Takata T. Angew. Chem. Int. Ed. 2017; 56: 14858

    • For related work on phenylacetylene-based polymers substituted with axially chiral rotaxanes see:
    • 31b Suzuki S. Ishiwari F. Nakazono K. Takata T. Chem. Commun. 2012; 6478
    • 31c Ishiwari F. Fukasawa K.-i. Sato T. Nakazono K. Koyama Y. Takata T. Chem. Eur. J. 2011; 17: 12067
  • 32 Cakmak Y. Erbas-Cakmak S. Leigh DA. J. Am. Chem. Soc. 2016; 1749
  • 33 Alexander JW. Briggs GB. Ann. Math. 1926; 28: 562
  • 34 Lukin O. Vögtle F. Angew. Chem. Int. Ed. 2005; 44: 1456
  • 35 Perret-Aebi L.-E. von Zelewsky A. Dietrich-Buchecker C. Sauvage J.-P. Angew. Chem. Int. Ed. 2004; 43: 4482
    • 36a Feigel M. Ladberg R. Engels S. Herbst-Irmer R. Fröhlich R. Angew. Chem. Int. Ed. 2006; 45: 5698
    • 36b Ponnuswamy N. Cougnon FB. L. Clough JM. Pantoş GD. Sanders JK. M. Science 2012; 338: 783
  • 37 Dietrich-Buchecker CO. Sauvage J.-P. Cian AD. Fischer J. J. Chem. Soc., Chem. Commun. 1994; 2231
  • 38 Rapenne G. Dietrich-Buchecker C. Sauvage J.-P. J. Am. Chem. Soc. 1996; 118: 10932
  • 39 Dietrich-Buchecker C. Rapenne G. Sauvage J.-P. De Cian A. Fischer J. Chem. Eur. J. 1999; 5: 1432
  • 40 Vögtle F. Hünten A. Vogel E. Buschbeck S. Safarowsky O. Recker J. Parham A.-H. Knott M. Müller WM. Müller U. Okamoto Y. Kubota T. Lindner W. Francotte E. Grimme S. Angew. Chem. Int. Ed. 2001; 40: 2468
  • 41 The same purification strategy was also employed by Leigh and coworkers for the isolation of topological isomers of other molecular knots as pentafoil knot and molecular 819 knot: Marcos V. Stephens AJ. Jaramillo-Garcia J. Nussbaumer AL. Woltering SL. Valero A. Lemonnier J.-F. Vitorica-Yrezabal IJ. Leigh DA. Science 2016; 352: 1555
  • 42 Zhang G. Gil-Ramirez G. Markevicius A. Browne C. Vitorica-Yrezabal IJ. Leigh DA. J. Am. Chem. Soc. 2015; 137: 10437
  • 43 Gil-Ramírez G. Hoekman S. Kitching MO. Leigh DA. Vitorica-Yrezabal IJ. Zhang G. J. Am. Chem. Soc. 2016; 138: 13159