Am J Perinatol 2017; 34(12): 1169-1177
DOI: 10.1055/s-0037-1602426
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA

Antibiotics Prescriptions in the Neonatal Intensive Care Unit: How to Overcome Everyday Challenges

D. Donà
1   Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, Padua, Italy
,
E. Mozzo
1   Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, Padua, Italy
,
V. Mardegan
2   Neonatal Intensive Care Unit, Department for Woman and Child Health, University of Padua, Padua, Italy
,
U. Trafojer
2   Neonatal Intensive Care Unit, Department for Woman and Child Health, University of Padua, Padua, Italy
,
P. Lago
2   Neonatal Intensive Care Unit, Department for Woman and Child Health, University of Padua, Padua, Italy
,
S. Salvadori
2   Neonatal Intensive Care Unit, Department for Woman and Child Health, University of Padua, Padua, Italy
,
E. Baraldi
2   Neonatal Intensive Care Unit, Department for Woman and Child Health, University of Padua, Padua, Italy
,
C. Giaquinto
1   Division of Pediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, Padua, Italy
› Author Affiliations
Further Information

Publication History

04 November 2016

16 February 2017

Publication Date:
10 April 2017 (online)

Abstract

Antimicrobial prescriptions in neonatal intensive care units (NICUs) represent a point of concern for the emergence of MDROs and for morbidity associated with prolonged antibiotic exposure (e.g., invasive candidiasis, necrotizing enterocolitis, and late-onset sepsis). Antimicrobial stewardship programs (ASPs) have shown to be a valuable tool for the prevention of resistance with the goals of optimizing clinical outcomes while decreasing unnecessary prescribing. The most frequent ASP strategies include the correct collection and interpretation of microbiological specimens, prescription of the narrowest-spectrum antibiotic appropriate for a particular case, and de-escalation or discontinuation of therapy in defined situations. A robust ASP requires everyday multidisciplinary collaboration between ID physicians, neonatologist, clinical pharmacists, clinical microbiologists, infection control professionals, hospital epidemiologists, and information services specialists. Education and clinical pathways (e.g., sepsis or surgical prophylaxis pathways) are an excellent starting point if followed by proactive interventions such as prospective audits and feedback and formulary restriction with prior antimicrobial authorization. The current review outlines the problems faced in NICU antimicrobial prescribing and presents various solutions from the literature.

 
  • References

  • 1 van der Meer JW, Gyssens IC. Quality of antimicrobial drug prescription in hospital. Clin Microbiol Infect 2001; 7 (Suppl. 06) 12-15
  • 2 Grohskopf LA, Huskins WC, Sinkowitz-Cochran RL, Levine GL, Goldmann DA, Jarvis WR. ; Pediatric Prevention Network. Use of antimicrobial agents in United States neonatal and pediatric intensive care patients. Pediatr Infect Dis J 2005; 24 (09) 766-773
  • 3 Hsieh EM, Hornik CP, Clark RH, Laughon MM, Benjamin jr DK, Smith PB. Best Pharmaceuticals for Children Act–Pediatric Trials Network. Medication use in the neonatal intensive care unit. Am J Perinatal 2014; 31 (09) 811-821
  • 4 Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin Jr DK. ; National Institute for Child Health and Human Development Neonatal Research Network. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006; 118 (02) 717-722
  • 5 Lee JH, Hornik CP, Benjamin Jr DK. , et al. Risk factors for invasive candidiasis in infants >1500 g birth weight. Pediatr Infect Dis J 2013; 32 (03) 222-226
  • 6 Cotten CM, Taylor S, Stoll B. , et al; NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009; 123 (01) 58-66
  • 7 Kuppala VS, Meinzen-Derr J, Morrow AL, Schibler KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr 2011; 159 (05) 720-725
  • 8 Goldstein EJ. Beyond the target pathogen: ecological effects of the hospital formulary. Curr Opin Infect Dis 2011; 24 (Suppl. 01) S21-S31
  • 9 Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 2003; 36 (11) 1433-1437
  • 10 Roberts RR, Hota B, Ahmad I. , et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 2009; 49 (08) 1175-1184
  • 11 Evans HL, Lefrak SN, Lyman J. , et al. Cost of gram-negative resistance. Crit Care Med 2007; 35 (01) 89-95
  • 12 Spellberg B, Guidos R, Gilbert D. , et al; Infectious Diseases Society of America. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 2008; 46 (02) 155-164
  • 13 Gupta A, Della-Latta P, Todd B. , et al. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit linked to artificial nails. Infect Control Hosp Epidemiol 2004; 25 (03) 210-215
  • 14 Beck-Sague CM, Azimi P, Fonseca SN. , et al. Bloodstream infections in neonatal intensive care unit patients: results of a multicenter study. Pediatr Infect Dis J 1994; 13 (12) 1110-1116
  • 15 Infectious Diseases Society of America (IDSA). BAD BUGS, NO DRUGS, As Antibiotic Discovery Stagnates. A Public Health Crisis Brews. http://www.idsociety.org/uploadedFiles/IDSA/Policy_and_Advocacy/Current_Topics_and_Issues/Advancing_Product_Research_and_Development/Bad_Bugs_No_Drugs/Statements/As%20Antibiotic%20Discovery%20Stagnates%20A%20Public%20Health%20Crisis%20Brews.pdf
  • 16 DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22 (02) 151-185
  • 17 Spellberg B, Powers JH, Brass EP, Miller LG, Edwards Jr JE. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 2004; 38 (09) 1279-1286
  • 18 Projan SJ. Why is big Pharma getting out of antibacterial drug discovery?. Curr Opin Microbiol 2003; 6 (05) 427-430
  • 19 McNeeley DF, Saint-Louis F, Noel GJ. Neonatal enterococcal bacteremia: an increasingly frequent event with potentially untreatable pathogens. Pediatr Infect Dis J 1996; 15 (09) 800-805
  • 20 Stone PW, Gupta A, Loughrey M. , et al. Attributable costs and length of stay of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreak in a neonatal intensive care unit. Infect Control Hosp Epidemiol 2003; 24 (08) 601-606
  • 21 Berild D, Abrahamsen TG, Andresen S. , et al. A controlled intervention study to improve antibiotic use in a Russian paediatric hospital. Int J Antimicrob Agents 2008; 31 (05) 478-483
  • 22 Shehab N, Patel PR, Srinivasan A, Budnitz DS. Emergency department visits for antibiotic-associated adverse events. Clin Infect Dis 2008; 47 (06) 735-743
  • 23 Lindell-Osuagwu L, Korhonen MJ, Saano S, Helin-Tanninen M, Naaranlahti T, Kokki H. Off-label and unlicensed drug prescribing in three paediatric wards in Finland and review of the international literature. J Clin Pharm Ther 2009; 34 (03) 277-287
  • 24 Lutsar I, Trafojer UM, Heath PT. , et al; NeoMero Consortium. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial. Trials 2011; 12: 215 . Doi: 10.1186/1745-6215-12-215
  • 25 NeoVanc. http://www.neovanc.org/en/the-project/overview/,81 . Accessed March 20, 2017
  • 26 Dellit TH, Owens RC, McGowan Jr JE. , et al; Infectious Diseases Society of America; Society for Healthcare Epidemiology of America. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007; 44 (02) 159-177
  • 27 Antimicrobial Stewardship Toolkit SHEA. 2011 http://www.shea-online.org/Portals/0/GNYHA_Antimicrobial_Stewardship_Toolkit_FINALv2%20Dec2011.pdf . Accessed March 20, 2017
  • 28 CDC. Centers fir Diseases Control and Prevention. http://www.cdc.gov/getsmart/healthcare/implementation/cvore-elements.html . Accessed March 20, 2017
  • 29 Jenkins TC, Knepper BC, Sabel AL. , et al. Decreased antibiotic utilization after implementation of a guideline for inpatient cellulitis and cutaneous abscess. Arch Intern Med 2011; 171 (12) 1072-1079
  • 30 Samore MH, Bateman K, Alder SC. , et al. Clinical decision support and appropriateness of antimicrobial prescribing: a randomized trial. JAMA 2005; 294 (18) 2305-2314
  • 31 Marrie TJ, Lau CY, Wheeler SL, Wong CJ, Vandervoort MK, Feagan BG. A controlled trial of a critical pathway for treatment of community-acquired pneumonia. CAPITAL Study Investigators. Community-Acquired Pneumonia Intervention Trial Assessing Levofloxacin. JAMA 2000; 283 (06) 749-755
  • 32 Dellit TH, Chan JD, Skerrett SJ, Nathens AB. Development of a guideline for the management of ventilator-associated pneumonia based on local microbiologic findings and impact of the guideline on antimicrobial use practices. Infect Control Hosp Epidemiol 2008; 29 (06) 525-533
  • 33 Cantey JB, Patel SJ. Antimicrobial stewardship in the NICU. Infect Dis Clin North Am 2014; 28 (02) 247-261
  • 34 Fischer JE. Physicians' ability to diagnose sepsis in newborns and critically ill children. Pediatr Crit Care Med 2005; 6 (3, Suppl): S120-S125
  • 35 Ottolini MC, Lundgren K, Mirkinson LJ, Cason S, Ottolini MG. Utility of complete blood count and blood culture screening to diagnose neonatal sepsis in the asymptomatic at risk newborn. Pediatr Infect Dis J 2003; 22 (05) 430-434
  • 36 Verstraete EH, Blot K, Mahieu L, Vogelaers D, Blot S. Prediction models for neonatal health care-associated sepsis: a meta-analysis. Pediatrics 2015; 135 (04) e1002-e1014
  • 37 Franz AR, Bauer K, Schalk A. , et al; International IL-8 Study Group. Measurement of interleukin 8 in combination with C-reactive protein reduced unnecessary antibiotic therapy in newborn infants: a multicenter, randomized, controlled trial. Pediatrics 2004; 114 (01) 1-8
  • 38 Parravicini E, Nemerofsky SL, Michelson KA. , et al. Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late onset culture-positive sepsis in very low birth weight infants. Pediatr Res 2010; 67 (06) 636-640
  • 39 Polin RA. ; Committee on Fetus and Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012; 129 (05) 1006-1015
  • 40 Chiesa C, Panero A, Rossi N. , et al. Reliability of procalcitonin concentrations for the diagnosis of sepsis in critically ill neonates. Clin Infect Dis 1998; 26 (03) 664-672
  • 41 Verboon-Maciolek MA, Thijsen SF, Hemels MA. , et al. Inflammatory mediators for the diagnosis and treatment of sepsis in early infancy. Pediatr Res 2006; 59 (03) 457-461
  • 42 Chiesa C, Natale F, Pascone R. , et al. C reactive protein and procalcitonin: reference intervals for preterm and term newborns during the early neonatal period. Clin Chim Acta 2011; 412 (11–12): 1053-1059
  • 43 Turner D, Hammerman C, Rudensky B. , et al. Procalcitonin in preterm infants during the first few days of life: introducing an age related nomogram. Arch Dis Child Fetal Neonatal Ed 2006; 91 (04) F283-F286
  • 44 Joram N, Muller JB, Denizot S. , et al. Umbilical cord blood procalcitonin level in early neonatal infections: a 4-year university hospital cohort study. Eur J Clin Microbiol Infect Dis 2011; 30 (08) 1005-1013
  • 45 Joram N, Rose JC, Gras-Le Guen C. Umbilical cord blood procalcitonin and CRP concentrations as marker for early diagnosis of very early onset neonatal infection. Arch Dis Child Fetal Neonatal Ed 2006; 91: 65-66
  • 46 Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340 (06) 448-454
  • 47 Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 1998; 102 (04) E41
  • 48 Benitz WE, Wynn JL, Polin RA. Reappraisal of guidelines for management of neonates with suspected early-onset sepsis. J Pediatr 2015; 166 (04) 1070-1074
  • 49 Moorman JR, Delos JB, Flower AA. , et al. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas 2011; 32 (11) 1821-1832
  • 50 Puopolo KM, Escobar GJ. Early-onset sepsis: a predictive model based on maternal risk factors. Curr Opin Pediatr 2013; 25 (02) 161-166
  • 51 EMA. Report on the Expert Meeting on Neonatal and Paediatric Sepsis. 2010 www.ema.europa.eu/docs/en_GB/document_library/Report/2010/12/WC500100199.pdf . Accessed March 20, 2017
  • 52 Wirtschafter DD, Padilla G, Suh O, Wan K, Trupp D, Fayard EE. Antibiotic use for presumed neonatally acquired infections far exceeds that for central line-associated blood stream infections: an exploratory critique. J Perinatol 2011; 31 (08) 514-518
  • 53 Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr 1996; 129 (02) 275-278
  • 54 Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital. Pediatrics 2007; 119 (05) 891-896
  • 55 Modi N, Doré CJ, Saraswatula A. , et al. A case definition for national and international neonatal bloodstream infection surveillance. Arch Dis Child Fetal Neonatal Ed 2009; 94 (01) F8-F12
  • 56 Nambiar S, Herwaldt LA, Singh N. Outbreak of invasive disease caused by methicillin-resistant Staphylococcus aureus in neonates and prevalence in the neonatal intensive care unit. Pediatr Crit Care Med 2003; 4 (02) 220-226
  • 57 Sherer CR, Sprague BM, Campos JM. , et al. Characterizing vancomycin-resistant enterococci in neonatal intensive care. Emerg Infect Dis 2005; 11 (09) 1470-1472
  • 58 Muller-Pebody B, Johnson AP, Heath PT, Gilbert RE, Henderson KL, Sharland M. ; iCAP Group (Improving Antibiotic Prescribing in Primary Care). Empirical treatment of neonatal sepsis: are the current guidelines adequate?. Arch Dis Child Fetal Neonatal Ed 2011; 96 (01) F4-F8
  • 59 Maayan-Metzger A, Barzilai A, Keller N, Kuint J. Are the “good old” antibiotics still appropriate for early-onset neonatal sepsis? A 10 year survey. Isr Med Assoc J 2009; 11 (03) 138-142
  • 60 Bégué P, Floret D, Mallet E. , et al. Pharmacokinetics and clinical evaluation of cefotaxime in children suffering with purulent meningitis. J Antimicrob Chemother 1984; 14 (Suppl B): 161-165
  • 61 de Man P, Verhoeven BA, Verbrugh HA, Vos MC, van den Anker JN. An antibiotic policy to prevent emergence of resistant bacilli. Lancet 2000; 355 (9208): 973-978
  • 62 Bryan CS, John Jr JF, Pai MS, Austin TL. Gentamicin vs cefotaxime for therapy of neonatal sepsis. Relationship to drug resistance. Am J Dis Child 1985; 139 (11) 1086-1089
  • 63 Lautenbach E, Polk RE. Resistant gram-negative bacilli: a neglected healthcare crisis?. Am J Health Syst Pharm 2007; 64 (23, Suppl 14): S3-S21 , quiz S22–S24
  • 64 Orsi GB, d'Ettorre G, Panero A, Chiarini F, Vullo V, Venditti M. Hospital-acquired infection surveillance in a neonatal intensive care unit. Am J Infect Control 2009; 37 (03) 201-203
  • 65 Vergnano S, Menson E, Kennea N. , et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed 2011; 96 (01) F9-F14
  • 66 Lutsar I, Chazallon C, Carducci FI. , et al; NeoMero Consortium. Current management of late onset neonatal bacterial sepsis in five European countries. Eur J Pediatr 2014; 173 (08) 997-1004
  • 67 Huang SY, Tang RB, Chen SJ, Chung RL. Coagulase-negative staphylococcal bacteremia in critically ill children: risk factors and antimicrobial susceptibility. J Microbiol Immunol Infect 2003; 36 (01) 51-55
  • 68 Garza-González E, Morfín-Otero R, Llaca-Díaz JM, Rodriguez-Noriega E. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol Infect 2010; 138 (05) 645-654
  • 69 Karlowicz MG, Buescher ES, Surka AE. Fulminant late-onset sepsis in a neonatal intensive care unit, 1988–1997, and the impact of avoiding empiric vancomycin therapy. Pediatrics 2000; 106 (06) 1387-1390
  • 70 Chiu CH, Michelow IC, Cronin J, Ringer SA, Ferris TG, Puopolo KM. Effectiveness of a guideline to reduce vancomycin use in the neonatal intensive care unit. Pediatr Infect Dis J 2011; 30 (04) 273-278
  • 71 Smith A, Saiman L, Zhou J, Della-Latta P, Jia H, Graham III PL. Concordance of gastrointestinal tract colonization and subsequent bloodstream infections with gram-negative bacilli in very low birth weight infants in the neonatal intensive care unit. Pediatr Infect Dis J 2010; 29 (09) 831-835
  • 72 Jager NG, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol 2016; 9 (07) 961-979
  • 73 Liu C, Bayer A, Cosgrove SE. , et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 2011; 52 (03) 285-292
  • 74 Pickering LK, Baker CJ, Kimberlin DW, Long SS. , eds. Red Book: 2009 Report of the Committee on Infectious Diseases. 28th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2009
  • 75 Cagno CK, Pettit JM, Weiss BD. Prevention of perinatal group B streptococcal disease: updated CDC guideline. Am Fam Physician 2012; 86 (01) 59-65
  • 76 Inglis GD, Jardine LA, Davies MW. Prophylactic antibiotics to reduce morbidity and mortality in neonates with umbilical artery catheters. Cochrane Database Syst Rev 2007; 4 (04) CD004697 . Doi: 10.1002/14651858.CD004697.pub2
  • 77 Inglis GD, Jardine LA, Davies MW. Prophylactic antibiotics to reduce morbidity and mortality in ventilated newborn infants. Cochrane Database Syst Rev 2007; 18 (03) CD004338 . Doi: 10.1002/14651858.CD004338.pub3
  • 78 Álvarez P, Fuentes C, García N, Modesto V. Evaluation of the duration of the antibiotic prophylaxis in paediatric postoperative heart surgery patients. Pediatr Cardiol 2012; 33 (05) 735-738
  • 79 Knoderer CA, Cox EG, Berg MD, Webster AH, Turrentine MW. Efficacy of limited cefuroxime prophylaxis in pediatric patients after cardiovascular surgery. Am J Health Syst Pharm 2011; 68 (10) 909-914
  • 80 Echols RM, Kowalsky SF. The use of an antibiotic order form for antibiotic utilization review: influence on physicians' prescribing patterns. J Infect Dis 1984; 150 (06) 803-807
  • 81 Briceland LL, Nightingale CH, Quintiliani R, Cooper BW, Smith KS. Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Arch Intern Med 1988; 148 (09) 2019-2022
  • 82 Patel SJ, Saiman L. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit [review]. Semin Perinatol 2012; 36 (06) 431-436
  • 83 Saito T, Senda K, Takakura S. , et al. Detection of bacteria and fungi in BacT/Alert standard blood-culture bottles. J Infect Chemother 2003; 9 (03) 227-232
  • 84 Messacar K, Hurst AL, Child J. , et al. Clinical impact and provider acceptability of real-time antimicrobial stewardship decision support for rapid diagnostics in children with positive blood culture results of pediatrics infectious disease. J Pediatric Infect Dis Soc 2016; DOI: 10.1093/jpids/piw047.