J Pediatr Infect Dis 2017; 12(04): 256-263
DOI: 10.1055/s-0037-1603561
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Prospects on the Application of DNA Barcoding on Soil-Transmitted Helminths in Children

Guo-Jie Brandon-Mong
1   Department of Parasitology, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
Romano Ngui
1   Department of Parasitology, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
Veeranoot Nissapatorn
1   Department of Parasitology, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
2   School of Allied Health Sciences, Walailak University, Thailand
› Author Affiliations
Further Information

Publication History

20 December 2016

10 January 2017

Publication Date:
08 June 2017 (online)


Since more than a decade, DNA barcoding has been widely used to examine biological samples and differentiate species, as well as employed in ecological and conservational studies. There is a growing interest of DNA barcoding, particularly in medical parasitology, but its potential utility in soil-transmitted helminths (STHs) remains unclear. Therefore, in this article, we review the studies using DNA barcoding and its applications in medical parasitology with special focus on STHs such as Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, and Trichuris trichiura. DNA barcoding is reliable for identifying STH species as well as its cryptic species. In addition, epidemiological data and the impacts of STH infections on children are discussed. This article further discusses the paucity of STH DNA barcodes (partial cytochrome oxidase subunit 1 [COI] mitochondrial DNA [mtDNA] sequences) in two gene banks; National Center for Biotechnology Information (NCBI) and Barcode of Life Data (BOLD) Systems. It also highlights the future prospects of DNA barcoding including primer designing and reference library on STHs.

  • References

  • 1 Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003; 270 (Suppl. 01) S96-S99
  • 2 Lahaye R, van der Bank M, Bogarin D. , et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 2008; 105 (08) 2923-2928
  • 3 Bickford D, Lohman DJ, Sodhi NS. , et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol 2007; 22 (03) 148-155
  • 4 Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proc Natl Acad Sci U S A 2004; 101 (41) 14812-14817
  • 5 Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T. Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One 2010; 5 (10) e13716
  • 6 Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Syst Biol 2005; 54 (05) 852-859
  • 7 Ratnasingham S, Hebert PD. Bold: the barcode of life data system ( http://www.barcodinglife.org ). Mol Ecol Notes 2007; 7 (03) 355-364
  • 8 Hajibabaei M, Smith MA, Janzen DH. , et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 2006; 6: 959-964
  • 9 Lee PS, Sing KW, Wilson JJ. Reading mammal diversity from flies: the persistence period of amplifiable mammal mtDNA in blowfly guts (Chrysomya megacephala) and a new DNA mini-barcode target. PLoS One 2015; 10 (04) e0123871
  • 10 Walker FM, Williamson CH, Sanchez DE, Sobek CJ, Chambers CL. Species from feces: order-wide identification of Chiroptera from guano and other non-invasive genetic samples. PLoS One 2016; 11 (09) e0162342
  • 11 Buhay JE. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustacean Biol 2009; 29 (01) 96-110
  • 12 Song H, Buhay JE, Whiting MF, Crandall KA. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci U S A 2008; 105 (36) 13486-13491
  • 13 Brandon-Mong GJ, Gan HM, Sing KW, Lee PS, Lim PE, Wilson JJ. DNA metabarcoding of insects and allies: an evaluation of primers and pipelines. Bull Entomol Res 2015; 105 (06) 717-727
  • 14 Waugh J. DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 2007; 29 (02) 188-197
  • 15 Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc Lond B Biol Sci 2005; 360 (1462): 1859-1868
  • 16 Remigio EA, Hebert PD. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogenet Evol 2003; 29 (03) 641-647
  • 17 Hickerson MJ, Meyer CP, Moritz C. DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 2006; 55 (05) 729-739
  • 18 Ondrejicka DA, Locke SA, Morey K, Borisenko AV, Hanner RH. Status and prospects of DNA barcoding in medically important parasites and vectors. Trends Parasitol 2014; 30 (12) 582-591
  • 19 Pramual P, Thaijarern J, Wongpakam K. DNA barcoding of human-biting black flies (Diptera: Simuliidae) in Thailand. Acta Trop 2016; 164: 33-40
  • 20 Nzelu CO, Cáceres AG, Arrunátegui-Jiménez MJ. , et al. DNA barcoding for identification of sand fly species (Diptera: Psychodidae) from leishmaniasis-endemic areas of Peru. Acta Trop 2015; 145: 45-51
  • 21 Murugan K, Vadivalagan C, Karthika P. , et al. DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res 2016; 115 (01) 107-121
  • 22 Zhao Y, Cao Z, Cheng J. , et al. Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences. Parasitol Res 2015; 114 (03) 1001-1010
  • 23 Šlapeta Š, Šlapeta J. Molecular identity of cat fleas (Ctenocephalides felis) from cats in Georgia, USA carrying Bartonella clarridgeiae, Bartonella henselae and Rickettsia sp. RF2125. Veterinary Parasitology: Regional Studies and Reports. 2016; 3–4: 36-40
  • 24 Ashfaq M, Prosser S, Nasir S, Masood M, Ratnasingham S, Hebert PD. High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera). Sci Rep 2015; 5: 14188
  • 25 Ghai RR, Simons ND, Chapman CA. , et al. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl Trop Dis 2014; 8 (10) e3256
  • 26 Millán J, Blasco-Costa I. Molecular evidence of shared hookworm Ancylostoma tubaeforme haplotypes between the critically endangered Iberian lynx and sympatric domestic cats. Vet Parasitol 2012; 186 (3–4): 518-522
  • 27 Van Steenkiste N, Locke SA, Castelin M, Marcogliese DJ, Abbott CL. New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Mol Ecol Resour 2015; 15 (04) 945-952
  • 28 Ferri E, Barbuto M, Bain O. , et al. Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Front Zool 2009; 6: 1
  • 29 Hotez PJ, Fenwick A, Savioli L, Molyneux DH. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 2009; 373 (9674): 1570-1575
  • 30 Pullan RL, Brooker SJ. The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors 2012; 5: 81
  • 31 WHO. Preventive Chemotheraphy in Human Helminthiasis. Coordinated Use of Anthelminthic Drugs in Control Interventions: A Manual for Health Professionals and Program Managers. Geneva: World Health Organization; 2006
  • 32 Acka CA, Raso G, N'goran EK. , et al. Parasitic worms: knowledge, attitudes, and practices in western Côte d'Ivoire with implications for integrated control. PLoS Negl Trop Dis 2010; 4 (12) e910
  • 33 Hotez PJ, Bundy DAP, Beegle K. , et al. Helminth infections: soil-transmitted helminth infections and schistosomiasis. In: Disease Control Priorities in Developing Countries, 2nd ed. Washington (DC): World Bank. New York: Oxford University Press; 2006: 467-482
  • 34 Ahmed A, Al-Mekhlafi HM, Azam MN. , et al. Soil-transmitted helminthiasis: a critical but neglected factor influencing school participation of aboriginal children in rural Malaysia. Parasitology 2012; 139 (06) 802-808
  • 35 Neva FA, Brown HW. Basic Clinical Parasitology. 6th ed. London: Prentice-Hall Incorporation; 1995
  • 36 Crompton DWT. Biology of Ascaris lumbricoides . In: Crompton DWT, Nesheim MC, Pawlowski ZS. , eds. Ascariasis and its prevention and control. London: Taylor and Francis; 1989: 9-44
  • 37 Makidono J. Observations on Ascaris during fluoroscopy. Am J Trop Med Hyg 1956; 5 (04) 699-702
  • 38 Phanichyakaran P, Direkwattanachai C, Na Ayunthya PI. Loeffler's syndrome report of two cases. Ramathibodi Med J 1979; 2: 147-151
  • 39 Crompton DWT. Ascaris and ascariasis. Adv Parasitol 2001; 48: 285-375
  • 40 Hotez PJ. Human hookworm infection. In: Farthing MJG, Keusch GT, Wakelin D. , eds. Enteric infection 2. Intestinal helminths. London, UK: Chapman and Hall Medical; 1995: 29-150
  • 41 Zhan B, Badamchian M, Meihua B. , et al. Molecular cloning and purification of Ac-TMP, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am J Trop Med Hyg 2002; 66 (03) 238-244
  • 42 Beasley NM, Tomkins AM, Hall A, Lorri W, Kihamia CM, Bundy DA. The impact of weekly iron supplementation on the iron status and growth of adolescent girls in Tanzania. Trop Med Int Health 2000; 5 (11) 794-799
  • 43 Smillie WG, Augustine DL. Hookworm infestation: the effect of varying intensities on the physical condition of school children. Am J Dis Child 1926; 31: 151-168
  • 44 WHO. Soil-transmitted helminthiases. Eliminating soil-transmitted helmin-thiases as a public health problem in children: progress report 2001–2010 and strategic plan 2011–2020. World Health Organization, Geneva; 2012
  • 45 Bethony J, Brooker S, Albonico M. , et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006; 367 (9521): 1521-1532
  • 46 Galvani AP. Age-dependent epidemiological patterns and strain diversity in helminth parasites. J Parasitol 2005; 91 (01) 24-30
  • 47 Hesham Al-Mekhlafi M, Surin J, Atiya AS, Ariffin WA, Mohammed Mahdy AK, Che Abdullah H. Pattern and predictors of soil-transmitted helminth reinfection among aboriginal schoolchildren in rural Peninsular Malaysia. Acta Trop 2008; 107 (02) 200-204
  • 48 Nasr NA, Al-Mekhlafi HM, Ahmed A, Roslan MA, Bulgiba A. Towards an effective control programme of soil-transmitted helminth infections among Orang Asli in rural Malaysia. Part 2: knowledge, attitude, and practices. Parasit Vectors 2013; 6: 28
  • 49 Stothard JR, Gabrielli AF. Schistosomiasis in African infants and preschool children: to treat or not to treat?. Trends Parasitol 2007; 23 (03) 83-86
  • 50 Ngui R, Shafie A, Chua KH. , et al. Mapping and modelling the geographical distribution of soil-transmitted helminthiases in Peninsular Malaysia: implications for control approaches. Geospat Health 2014; 8 (02) 365-376
  • 51 Tanumihardjo SA, Permaesih D. , Muhilal. Vitamin A status and hemoglobin concentrations are improved in Indonesian children with vitamin A and deworming interventions. Eur J Clin Nutr 2004; 58 (09) 1223-1230
  • 52 Al-Mekhlafi HM, Azlin M, Aini UN. , et al. Protein-energy malnutrition and soil-transmitted helminthiases among Orang Asli children in Selangor, Malaysia. Asia Pac J Clin Nutr 2005; 14 (02) 188-194
  • 53 Bleakley H. Disease and development: evidence from hookworm eradication in the American South. Q J Econ 2007; 122 (01) 73-117
  • 54 Conteh L, Engels T, Molyneux DH. Socioeconomic aspects of neglected tropical diseases. Lancet 2010; 375 (9710): 239-247
  • 55 Stephenson LS, Latham MC, Kinoti SN, Kurz KM, Brigham H. Improvements in physical fitness of Kenyan schoolboys infected with hookworm, Trichuris trichiura and Ascaris lumbricoides following a single dose of albendazole. Trans R Soc Trop Med Hyg 1990; 84 (02) 277-282
  • 56 Miguel EA, Kremer M. Worms: identifying impacts on education and health in the presence of treatment externalities. Econometrica 2004; 72: 159-217
  • 57 Bundy DAP, Kremer M, Bleakley H, Jukes MC, Miguel E. Deworming and development: asking the right questions, asking the questions right. PLoS Negl Trop Dis 2009; 3 (01) e362
  • 58 Ohta N, Waikagul J. Disease burden and epidemiology of soil-transmitted helminthiases and schistosomiasis in Asia: the Japanese perspective. Trends Parasitol 2007; 23 (01) 30-35
  • 59 Urbani C, Albonico M. Anthelminthic drug safety and drug administration in the control of soil-transmitted helminthiasis in community campaigns. Acta Trop 2003; 86 (2–3): 215-221
  • 60 Ooi HK, Tenora F, Itoh K, Kamiya M. Comparative study of Trichuris trichiura from non-human primates and from man, and their difference with T. suis . J Vet Med Sci 1993; 55 (03) 363-366
  • 61 Doležalová J, Obornik M, Hajduskova E. , et al. How many species of whipworms do we share? Whipworms from man and other primates form two phylogenetic lineages. Folia Parasitol (Praha) 2015; 62: 063
  • 62 Eamsobhana P, Lim PE, Solano G, Zhang H, Gan X, Yong HS. Molecular differentiation of Angiostrongylus taxa (Nematoda: Angiostrongylidae) by cytochrome c oxidase subunit I (COI) gene sequences. Acta Trop 2010; 116 (02) 152-156
  • 63 Liu GH, Wu CY, Song HQ. , et al. Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene 2012; 492 (01) 110-116
  • 64 Blouin MS. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 2002; 32 (05) 527-531
  • 65 Betson M, Halstead FD, Nejsum P. , et al. A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling. Trans R Soc Trop Med Hyg 2011; 105 (07) 370-379
  • 66 Peng W, Yuan K, Hu M, Zhou X, Gasser RB. Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 2005; 26 (22) 4317-4326
  • 67 Li T, Zhan B, Hawdon JM. , et al. [Sequencing of cytochrome C oxidase 1 gene of Ancylostoma duodenale and Necator americanus]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 1999; 17 (02) 81-83
  • 68 Hu M, Chilton NB, Zhu X, Gasser RB. Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 2002; 23 (01) 27-34
  • 69 Hu M, Gasser RB, Chilton NB, Beveridge I. Genetic variation in the mitochondrial cytochrome c oxidase subunit 1 within three species of Progamotaenia (Cestoda: Anoplocephalidae) from macropodid marsupials. Parasitology 2005; 130 (Pt 1): 117-129
  • 70 Bhadury P, Austen MC, Bilton DT. , et al. Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 2006; 320: 1-9
  • 71 Guardone L, Deplazes P, Macchioni F, Magi M, Mathis A. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Vet Parasitol 2013; 197 (1–2): 364-369
  • 72 Miranda RR, Tennessen JA, Blouin MS, Rabelo EM. Mitochondrial DNA variation of the dog hookworm Ancylostoma caninum in Brazilian populations. Vet Parasitol 2008; 151 (01) 61-67
  • 73 Haase M, Misof B. Dynamic gastropods: stable shell polymorphism despite gene flow in the land snail Arianta arbustorum . J Zoolog Syst Evol Res 2009; 47: 105-114
  • 74 da Silva Alves EB, Conceição MJ, Leles D. Ascaris lumbricoides, Ascaris suum, or “Ascaris lumbrisuum”?. J Infect Dis 2016; 213 (08) 1355
  • 75 Betson M, Nejsum P, Bendall RP, Deb RM, Stothard JR. Molecular epidemiology of ascariasis: a global perspective on the transmission dynamics of Ascaris in people and pigs. J Infect Dis 2014; 210 (06) 932-941
  • 76 Søe MJ, Nejsum P, Fredensborg BL, Kapel CM. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J Parasitol 2015; 101 (01) 57-63
  • 77 Hu M, Chilton NB, Abs El-Osta YG, Gasser RB. Comparative analysis of mitochondrial genome data for Necator americanus from two endemic regions reveals substantial genetic variation. Int J Parasitol 2003; 33 (09) 955-963
  • 78 Hu M, Rabelo EM, Schindler AR, Roberts H, Gasser RB. Extensive and complex sequence diversity in mitochondrial cytochrome c oxidase subunit 1 within Necator americanus from Colombia revealed by SSCP-coupled sequencing. Mol Cell Probes 2008; 22 (04) 234-237
  • 79 Callejón R, Nadler S, De Rojas M, Zurita A, Petrášová J, Cutillas C. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA. Parasitol Res 2013; 112 (11) 3933-3949