CC BY-NC-ND 4.0 · Journal of Child Science 2017; 07(01): e42-e53
DOI: 10.1055/s-0037-1603894
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pediatric Sepsis: Clinical Markers

S. Szima
1   Department of Pediatrics, Medical Center Coburg, Academic Hospital of the University of Split, Coburg, Germany
G. Balazs
2   Institute of Pediatrics, Clinical Center, University of Debrecen, Debrecen, Hungary
N. Elek
2   Institute of Pediatrics, Clinical Center, University of Debrecen, Debrecen, Hungary
P. Dahlem
1   Department of Pediatrics, Medical Center Coburg, Academic Hospital of the University of Split, Coburg, Germany
› Author Affiliations
Further Information

Publication History

28 April 2017

30 April 2017

Publication Date:
26 July 2017 (online)


Pediatric sepsis can be caused by infection agents such as viruses, bacteria, protozoa, or their toxins. Clinical features cover a remarkably wide spectrum. Early recognition of the disease and prompt initiation of therapy substantially improve mortality and the outcome of potential complications. After an initial phase of very mild symptoms, the spread of microbes or toxins in the bloodstream presents as septic shock through vasoregulatory disturbance, absolute or relative intravascular volume loss, and consequential tachycardia and hypotension. The most common accompanying symptom is fever. In physical examination, features such as altered mental status, excess respiratory effort, tachycardia, and prolonged capillary refill time are present at an early stage of the disease. Laboratory tests for the assessment of early stage severity and subsequent monitoring of treatment efficacy include point-of-care arterial blood gas analysis and lactate assay. In early stage disease, it is imperative to promptly start adequate antimicrobial and supportive treatment once bacterial cultures have been taken. Despite the availability of a wide range of laboratory and imaging tests today, diagnosis and severity assessment of sepsis still primarily rely on medical history and clinical examination. In light of this, it is possible for trained care providers to detect the early signs of a septic child during repetitive physical examinations. This is still the mainstay of diagnosis and can provide in all care settings a significant reduction in therapeutic delay; this, in turn, helps to reduce sepsis-related mortality and morbidity.

  • References

  • 1 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29 (07) 1303-1310
  • 2 Weiss SL, Fitzgerald JC, Pappachan J. , et al; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191 (10) 1147-1157
  • 3 Odetola FO, Gebremariam A, Freed GL. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics 2007; 119 (03) 487-494
  • 4 Kissoon N, Carcillo JA, Espinosa V. , et al; Global Sepsis Initiative Vanguard Center Contributors. World Federation of Pediatric Intensive Care and Critical Care Societies: Global Sepsis Initiative. Pediatr Crit Care Med 2011; 12 (05) 494-503
  • 5 Goldstein B, Giroir B, Randolph A. ; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6 (01) 2-8
  • 6 UpToDate. Systemic inflammatory response syndrome (SIRS) and sepsis in children: definitions, epidemiology, clinical manifestations, and diagnosis. Available at . Accessed March 11, 2017
  • 7 Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348 (02) 138-150
  • 8 Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock 1999; 11 (03) 153-159
  • 9 Payen D, Faivre V, Lukaszewicz AC, Villa F, Goldberg P. Expression of monocyte human leukocyte antigen-DR in relation with sepsis severity and plasma mediators. Minerva Anestesiol 2009; 75 (09) 484-493
  • 10 Hall MW, Knatz NL, Vetterly C. , et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 2011; 37 (03) 525-532
  • 11 Cinel I, Dellinger RP. Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis 2007; 20 (04) 345-352
  • 12 Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48
  • 13 Butt W. Septic shock. Pediatr Clin North Am 2001; 48 (03) 601-625 , viii
  • 14 Gaines NN, Patel B, Williams EA, Cruz AT. Etiologies of septic shock in a pediatric emergency department population. Pediatr Infect Dis J 2012; 31 (11) 1203-1205
  • 15 Kutko MC, Calarco MP, Flaherty MB. , et al. Mortality rates in pediatric septic shock with and without multiple organ system failure. Pediatr Crit Care Med 2003; 4 (03) 333-337
  • 16 Wilkinson JD, Pollack MM, Glass NL, Kanter RK, Katz RW, Steinhart CM. Mortality associated with multiple organ system failure and sepsis in pediatric intensive care unit. J Pediatr 1987; 111 (03) 324-328
  • 17 Leteurtre S, Martinot A, Duhamel A. , et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 2003; 362 (9379): 192-197
  • 18 Graciano AL, Balko JA, Rahn DS, Ahmad N, Giroir BP. The Pediatric Multiple Organ Dysfunction Score (P-MODS): development and validation of an objective scale to measure the severity of multiple organ dysfunction in critically ill children. Crit Care Med 2005; 33 (07) 1484-1491
  • 19 Typpo KV, Petersen NJ, Hallman DM, Markovitz BP, Mariscalco MM. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr Crit Care Med 2009; 10 (05) 562-570
  • 20 Weiss SL, Parker B, Bullock ME. , et al. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med 2012; 13 (04) e219-e226
  • 21 Bone RC, Balk RA, Cerra FB. , et al; The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101 (06) 1644-1655
  • 22 Levy MM, Fink MP, Marshall JC. , et al; International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29 (04) 530-538
  • 23 Marshall JC. SIRS and MODS: what is their relevance to the science and practice of intensive care?. Shock 2000; 14 (06) 586-589
  • 24 Singer M, Deutschman CS, Seymour CW. , et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 25 Launey Y, Nesseler N, Mallédant Y, Seguin P. Clinical review: fever in septic ICU patients--friend or foe?. Crit Care 2011; 15 (03) 222 . Doi: 10.1186/cc10097
  • 26 Kushimoto S, Gando S, Saitoh D. , et al; JAAM Sepsis Registry Study Group. The impact of body temperature abnormalities on the disease severity and outcome in patients with severe sepsis: an analysis from a multicenter, prospective survey of severe sepsis. Crit Care 2013; 17 (06) R271 . Doi: 10.1186/cc13106
  • 27 Tiruvoipati R, Ong K, Gangopadhyay H, Arora S, Carney I, Botha J. Hypothermia predicts mortality in critically ill elderly patients with sepsis. BMC Geriatr 2010; 10: 70 . Doi: 10.1186/1471-2318-10-70
  • 28 Wiewel MA, Harmon MB, van Vught LA. , et al. Risk factors, host response and outcome of hypothermic sepsis. Crit Care 2016; 20 (01) 328 . Doi: 10.1186/s13054-016-1510-3
  • 29 Drewry AM, Fuller BM, Skrupky LP, Hotchkiss RS. The presence of hypothermia within 24 hours of sepsis diagnosis predicts persistent lymphopenia. Crit Care Med 2015; 43 (06) 1165-1169
  • 30 Jenkins DD, Lee T, Chiuzan C. , et al. Altered circulating leukocytes and their chemokines in a clinical trial of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. Pediatr Crit Care Med 2013; 14 (08) 786-795
  • 31 Wallgren UM, Bohm KEM, Kurland L. Presentations of adult septic patients in the prehospital setting as recorded by emergency medical services: a mixed methods analysis. Scand J Trauma Resusc Emerg Med 2017; 25 (01) 23 . Doi: 10.1186/s13049-017-0367-z
  • 32 Kenzaka T, Okayama M, Kuroki S. , et al. Importance of vital signs to the early diagnosis and severity of sepsis: association between vital signs and sequential organ failure assessment score in patients with sepsis. Intern Med 2012; 51 (08) 871-876
  • 33 Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP. Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J 2003; 22 (06) 980-985
  • 34 Ranieri VM, Rubenfeld GD, Thompson BT. , et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 35 Brierley J, Carcillo JA, Choong K. , et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 2009; 37 (02) 666-688
  • 36 Santschi M, Jouvet P, Leclerc F. , et al; PALIVE Investigators; Pediatric Acute Lung Injury and Sepsis Investigators Network (PALISI); European Society of Pediatric and Neonatal Intensive Care (ESPNIC). Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 2010; 11 (06) 681-689
  • 37 Randolph AG, Meert KL, O'Neil ME. , et al; Pediatric Acute Lung Injury and Sepsis Investigators Network. The feasibility of conducting clinical trials in infants and children with acute respiratory failure. Am J Respir Crit Care Med 2003; 167 (10) 1334-1340
  • 38 Khilnani P, Singhi S, Lodha R. , et al. Pediatric Sepsis Guidelines: summary for resource-limited countries. Indian J Crit Care Med 2010; 14 (01) 41-52
  • 39 Dellinger RP, Levy MM, Rhodes A. , et al; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41 (02) 580-637
  • 40 Wheeler DS, Wong HR, Zingarelli B. Pediatric sepsis - part I: “Children are not small adults!”. Open Inflamm J 2011; 4: 4-15
  • 41 Watson RS, Carcillo JA. Scope and epidemiology of pediatric sepsis. Pediatr Crit Care Med 2005; 6 (3, Suppl): S3-S5
  • 42 Aneja R, Carcillo J. Differences between adult and pediatric septic shock. Minerva Anestesiol 2011; 77 (10) 986-992
  • 43 Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987; 15 (10) 923-929
  • 44 Chen WL, Kuo CD. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad Emerg Med 2007; 14 (05) 392-397
  • 45 Pollack MM, Fields AI, Ruttimann UE. Sequential cardiopulmonary variables of infants and children in septic shock. Crit Care Med 1984; 12 (07) 554-559
  • 46 Kleinman ME, Chameides L, Schexnayder SM. , et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122 (18) (Suppl. 03) S876-S908
  • 47 Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 2009; 37 (08) 2448-2454
  • 48 Pontet J, Contreras P, Curbelo A. , et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care 2003; 18 (03) 156-163
  • 49 Chen WL, Chen JH, Huang CC, Kuo CD, Huang CI, Lee LS. Heart rate variability measures as predictors of in-hospital mortality in ED patients with sepsis. Am J Emerg Med 2008; 26 (04) 395-401
  • 50 Barnaby D, Ferrick K, Kaplan DT, Shah S, Bijur P, Gallagher EJ. Heart rate variability in emergency department patients with sepsis. Acad Emerg Med 2002; 9 (07) 661-670
  • 51 Ahmad S, Ramsay T, Huebsch L. , et al. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One 2009; 4 (08) e6642 . Doi: 10.1371/journal.pone.0006642
  • 52 Griffin MP, Lake DE, Moorman JR. Heart rate characteristics and laboratory tests in neonatal sepsis. Pediatrics 2005; 115 (04) 937-941
  • 53 Cuestas E, Rizzotti A, Agüero G. Heart rate variability analysis: a new approach in clinical research methodology for neonatal sepsis [in Spanish]. Arch Argent Pediatr 2011; 109 (04) 333-338
  • 54 Kovatchev BP, Farhy LS, Cao H, Griffin MP, Lake DE, Moorman JR. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr Res 2003; 54 (06) 892-898
  • 55 Tateishi Y, Oda S, Nakamura M. , et al. Depressed heart rate variability is associated with high IL-6 blood level and decline in the blood pressure in septic patients. Shock 2007; 28 (05) 549-553
  • 56 Fairchild KD, O'Shea TM. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clin Perinatol 2010; 37 (03) 581-598
  • 57 Fairchild KD. Predictive monitoring for early detection of sepsis in neonatal ICU patients. Curr Opin Pediatr 2013; 25 (02) 172-179
  • 58 Scheff JD, Griffel B, Corbett SA, Calvano SE, Androulakis IP. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation. Math Biosci 2014; 252: 36-44
  • 59 Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101 (10) 3765-3777
  • 60 Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 1995; 23 (02) 265-271
  • 61 Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 1996; 153 (01) 191-195
  • 62 Temmesfeld-Wollbrück B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F. Abnormalities of gastric mucosal oxygenation in septic shock: partial responsiveness to dopexamine. Am J Respir Crit Care Med 1998; 157 (5 Pt 1): 1586-1592
  • 63 De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166 (01) 98-104
  • 64 Ceneviva G, Paschall JA, Maffei F, Carcillo JA. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 1998; 102 (02) e19 . Doi: 10.1542/peds.102.2.e19
  • 65 Saavedra JM, Harris GD, Li S, Finberg L. Capillary refilling (skin turgor) in the assessment of dehydration. Am J Dis Child 1991; 145 (03) 296-298
  • 66 Tibby SM, Hatherill M, Murdoch IA. Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child 1999; 80 (02) 163-166
  • 67 Carcillo JA, Kuch BA, Han YY. , et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics 2009; 124 (02) 500-508
  • 68 Carcillo JA. Capillary refill time is a very useful clinical sign in early recognition and treatment of very sick children. Pediatr Crit Care Med 2012; 13 (02) 210-212
  • 69 Han YY, Carcillo JA, Dragotta MA. , et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics 2003; 112 (04) 793-799
  • 70 Pamba A, Maitland K. Capillary refill: prognostic value in Kenyan children. Arch Dis Child 2004; 89 (10) 950-955
  • 71 Fleming S, Gill P, Jones C. , et al. Validity and reliability of measurement of capillary refill time in children: a systematic review. Arch Dis Child 2015; 100 (03) 239-249
  • 72 Carcillo JA. Reducing the global burden of sepsis in infants and children: a clinical practice research agenda. Pediatr Crit Care Med 2005; 6 (3, Suppl): S157-S164
  • 73 Abe T, Sasaki A, Ueda T, Miyakawa Y, Ochiai H. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab: a case report. Medicine (Baltimore) 2017; 96 (06) e6056 . Doi: 10.1097/MD.0000000000006056
  • 74 Ekeoduru RA, Greives MR, Nesrsta EA. Challenging airway secondary to purpura fulminans with face and neck bullae in a premature infant: a case report. A A Case Rep 2017; 8 (04) 70-71
  • 75 Brunkhorst FM, Patchev V. Sepsis-associated Purpura Fulminans International Registry–Europe (SAPFIRE) [in German]. Medizinische Klinik - Intensivmedizin und Notfallmedizin 2014; 109 (08) 591-595
  • 76 Hale AJ, LaSalvia M, Kirby JE, Kimball A, Baden R. Fatal purpura fulminans and Waterhouse-Friderichsen syndrome from fulminant Streptococcus pneumoniae sepsis in an asplenic young adult. IDCases 2016; 6: 1-4
  • 77 Wang Z, Yu Z, Su J, Cao L, Zhao X, Ruan C. Sepsis-induced disseminated intravascular coagulation with features of thrombotic thrombocytopenic purpura: a fatal fulminant syndrome. Clin Appl Thromb Hemost 2011; 17 (03) 251-253
  • 78 Flinn A, McDermott M, Butler KM. A child with septic shock and purpura. JAMA Pediatr 2016; 170 (04) 391-392
  • 79 Thomas AE, Baird SF, Anderson J. Purpuric and petechial rashes in adults and children: initial assessment. BMJ 2016; 352: i1285 . Doi: 10.1136/bmj.i1285
  • 80 Dr. Axel Bosk, Speyer (DSG, GNPI) Prof. Dr. Andreas Groll, Münster (Paul-Ehrlich-Gesellschaft für Chemotherapie e.V) PD Dr. Markus Hufnagel, Freiburg (DGPI), Prof. Dr. Thomas Lehrnbecher, Frankfurt (GPOH), Prof. Dr. Johannes Pöschl, Heidelberg (DGKJ, DIVI), Prof. Dr. Arne Simon, Homburg/Saar (DGPI), Prof. Dr. Constanze Wendt, Heidelberg Leitlinie Sepsis bei Kindern jenseits der Neonatalperiode AWMF-Register Nr. 024/025 Klasse: S2k
  • 81 Struthers S, Underhill H, Albersheim S, Greenberg D, Dobson S. A comparison of two versus one blood culture in the diagnosis and treatment of coagulase-negative staphylococcus in the neonatal intensive care unit. J Perinatol 2002; 22 (07) 547-549
  • 82 Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr 1996; 128 (02) 190-195
  • 83 Kaditis AG, O'Marcaigh AS, Rhodes KH, Weaver AL, Henry NK. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatr Infect Dis J 1996; 15 (07) 615-620
  • 84 Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J Pediatr 1996; 129 (02) 275-278
  • 85 Kellogg JA, Manzella JP, Bankert DA. Frequency of low-level bacteremia in children from birth to fifteen years of age. J Clin Microbiol 2000; 38 (06) 2181-2185
  • 86 Buttery JP. Blood cultures in newborns and children: optimising an everyday test. Arch Dis Child Fetal Neonatal Ed 2002; 87 (01) F25-F28
  • 87 Guerti K, Ieven M, Mahieu L. Diagnosis of catheter-related bloodstream infection in neonates: a study on the value of differential time to positivity of paired blood cultures. Pediatr Crit Care Med 2007; 8 (05) 470-475
  • 88 Tenney JH, Reller LB, Mirrett S, Wang WL, Weinstein MP. Controlled evaluation of the volume of blood cultured in detection of bacteremia and fungemia. J Clin Microbiol 1982; 15 (04) 558-561
  • 89 Hall MM, Ilstrup DM, Washington II JA. Effect of volume of blood cultured on detection of bacteremia. J Clin Microbiol 1976; 3 (06) 643-645
  • 90 Wagner SJ, Eder AF. A model to predict the improvement of automated blood culture bacterial detection by doubling platelet sample volume. Transfusion 2007; 47 (03) 430-433
  • 91 Kennaugh JK, Gregory WW, Powell KR, Hendley JO. The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatr Infect Dis 1984; 3 (04) 317-318
  • 92 Auckenthaler R, Ilstrup DM, Washington II JA. Comparison of recovery of organisms from blood cultures diluted 10% (volume/volume) and 20% (volume/volume). J Clin Microbiol 1982; 15 (05) 860-864
  • 93 Solorzano-Santos F, Miranda-Novales MG, Leanos-Miranda B, Diaz-Ponce H, Palacios-Saucedo G. A blood micro-culture system for the diagnosis of bacteremia in pediatric patients. Scand J Infect Dis 1998; 30 (05) 481-483
  • 94 Zadroga R, Williams DN, Gottschall R. , et al. Comparison of 2 blood culture media shows significant differences in bacterial recovery for patients on antimicrobial therapy. Clin Infect Dis 2013; 56 (06) 790-797
  • 95 Shahar E, Wohl-Gottesman BS, Shenkman L. Contamination of blood cultures during venepuncture: fact or myth?. Postgrad Med J 1990; 66 (782) 1053-1058
  • 96 Lucignano B, Ranno S, Liesenfeld O. , et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol 2011; 49 (06) 2252-2258
  • 97 Dark P, Wilson C, Blackwood B. , et al. Accuracy of LightCycler(R) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol. BMJ Open 2012; 2 (01) e000392
  • 98 Dark P, Dunn G, Chadwick P. , et al. The clinical diagnostic accuracy of rapid detection of healthcare-associated bloodstream infection in intensive care using multipathogen real-time PCR technology. BMJ Open 2011; 1 (01) e000181
  • 99 Spencer DH, Sellenriek P, Burnham CA. Validation and implementation of the GeneXpert MRSA/SA blood culture assay in a pediatric setting. Am J Clin Pathol 2011; 136 (05) 690-694
  • 100 Tschiedel E, Steinmann J, Buer J, Felderhoff-Müser U, Rath PM, Dohna-Schwake C. . Anwendung von LightCycler® SeptiFast bei pädiatrischen Patienten. Klinische Pädiatrie 2010;222
  • 101 Tsalik EL, Jones D, Nicholson B. , et al. Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. J Clin Microbiol 2010; 48 (01) 26-33
  • 102 Vincent JL, Beumier M. Diagnostic and prognostic markers in sepsis. Expert Rev Anti Infect Ther 2013; 11 (03) 265-275
  • 103 Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev 2012; 25 (04) 609-634
  • 104 Nierhaus A, Klatte S, Linssen J. , et al. Revisiting the white blood cell count: immature granulocytes count as a diagnostic marker to discriminate between SIRS and sepsis--a prospective, observational study. BMC Immunol 2013; 14: 8
  • 105 Poggi C, Bianconi T, Gozzini E, Generoso M, Dani C. Presepsin for the detection of late-onset sepsis in preterm newborns. Pediatrics 2015; 135 (01) 68-75
  • 106 Mickiewicz B, Thompson GC, Blackwood J. , et al; Alberta Sepsis Network. Development of metabolic and inflammatory mediator biomarker phenotyping for early diagnosis and triage of pediatric sepsis. Crit Care 2015; 19: 320
  • 107 Luaces-Cubells C, Mintegi S, García-García JJ. , et al. Procalcitonin to detect invasive bacterial infection in non-toxic-appearing infants with fever without apparent source in the emergency department. Pediatr Infect Dis J 2012; 31 (06) 645-647
  • 108 Maniaci V, Dauber A, Weiss S, Nylen E, Becker KL, Bachur R. Procalcitonin in young febrile infants for the detection of serious bacterial infections. Pediatrics 2008; 122 (04) 701-710
  • 109 Lai CC, Chen SY, Wang CY. , et al. Diagnostic value of procalcitonin for bacterial infection in elderly patients in the emergency department. J Am Geriatr Soc 2010; 58 (03) 518-522
  • 110 Jekarl DW, Lee SY, Lee J. , et al. Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis 2013; 75 (04) 342-347
  • 111 Carcillo JA, Fields AI. ; American College of Critical Care Medicine Task Force Committee Members. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 2002; 30 (06) 1365-1378
  • 112 Agyeman P, Aebi C, Hirt A. , et al. Predicting bacteremia in children with cancer and fever in chemotherapy-induced neutropenia: results of the prospective multicenter SPOG 2003 FN study. Pediatr Infect Dis J 2011; 30 (07) e114-e119
  • 113 Manzano S, Bailey B, Gervaix A, Cousineau J, Delvin E, Girodias JB. Markers for bacterial infection in children with fever without source. Arch Dis Child 2011; 96 (05) 440-446
  • 114 Fernández Lopez A, Luaces Cubells C, García García JJ, Fernández Pou J. ; Spanish Society of Pediatric Emergencies. Procalcitonin in pediatric emergency departments for the early diagnosis of invasive bacterial infections in febrile infants: results of a multicenter study and utility of a rapid qualitative test for this marker. Pediatr Infect Dis J 2003; 22 (10) 895-903
  • 115 Thayyil S, Shenoy M, Hamaluba M, Gupta A, Frater J, Verber IG. Is procalcitonin useful in early diagnosis of serious bacterial infections in children?. Acta Paediatr 2005; 94 (02) 155-158
  • 116 Manzano S, Bailey B, Girodias JB, Galetto-Lacour A, Cousineau J, Delvin E. Impact of procalcitonin on the management of children aged 1 to 36 months presenting with fever without source: a randomized controlled trial. Am J Emerg Med 2010; 28 (06) 647-653
  • 117 Enguix A, Rey C, Concha A, Medina A, Coto D, Diéguez MA. Comparison of procalcitonin with C-reactive protein and serum amyloid for the early diagnosis of bacterial sepsis in critically ill neonates and children. Intensive Care Med 2001; 27 (01) 211-215
  • 118 Pavcnik-Arnol M, Hojker S, Derganc M. Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med 2004; 30 (07) 1454-1460
  • 119 Rey C, Los Arcos M, Concha A. , et al. Procalcitonin and C-reactive protein as markers of systemic inflammatory response syndrome severity in critically ill children. Intensive Care Med 2007; 33 (03) 477-484
  • 120 Arkader R, Troster EJ, Lopes MR. , et al. Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome. Arch Dis Child 2006; 91 (02) 117-120
  • 121 Han YY, Doughty LA, Kofos D, Sasser H, Carcillo JA. Procalcitonin is persistently increased among children with poor outcome from bacterial sepsis. Pediatr Crit Care Med 2003; 4 (01) 21-25
  • 122 Levi M. Disseminated intravascular coagulation. Crit Care Med 2007; 35 (09) 2191-2195
  • 123 Bick RL. Disseminated intravascular coagulation current concepts of etiology, pathophysiology, diagnosis, and treatment. Hematol Oncol Clin North Am 2003; 17 (01) 149-176
  • 124 Barbui T, Falanga A. Disseminated intravascular coagulation in acute leukemia. Semin Thromb Hemost 2001; 27 (06) 593-604
  • 125 Williams MD, Chalmers EA, Gibson BE. ; Haemostasis and Thrombosis Task Force, British Committee for Standards in Haematology. The investigation and management of neonatal haemostasis and thrombosis. Br J Haematol 2002; 119 (02) 295-309
  • 126 Franchini M, Manzato F. Update on the treatment of disseminated intravascular coagulation. Hematology 2004; 9 (02) 81-85
  • 127 de Kleijn ED, de Groot R, Hack CE. , et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 2003; 31 (06) 1839-1847
  • 128 Veldman A, Fischer D, Wong FY. , et al. Human protein C concentrate in the treatment of purpura fulminans: a retrospective analysis of safety and outcome in 94 pediatric patients. Crit Care 2010; 14 (04) R156
  • 129 Ettingshausen CE, Veldmann A, Beeg T, Schneider W, Jäger G, Kreuz W. Replacement therapy with protein C concentrate in infants and adolescents with meningococcal sepsis and purpura fulminans. Semin Thromb Hemost 1999; 25 (06) 537-541
  • 130 Johansen ME. Hemostasis and endothelial damage during sepsis. Dan Med J 2015; 62 (08) B5135
  • 131 Pinsky MR, Matuschak GM. Multiple systems organ failure: failure of host defense homeostasis. Crit Care Clin 1989; 5 (02) 199-220
  • 132 Dellinger RP, Carlet JM, Masur H. , et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 2004; 30 (04) 536-555
  • 133 Dellinger RP, Levy MM, Carlet JM. , et al; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and Infectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society of Intensive Care Medicine; Society of Critical Care Medicine; Society of Hospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive and Critical Care Medicine. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36 (01) 296-327
  • 134 Scott HF, Donoghue AJ, Gaieski DF, Marchese RF, Mistry RD. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Acad Emerg Med 2012; 19 (11) 1276-1280
  • 135 McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin 2001; 17 (01) 107-124
  • 136 Turina M, Fry DE, Polk Jr HC. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit Care Med 2005; 33 (07) 1624-1633
  • 137 Day KM, Haub N, Betts H, Inwald DP. Hyperglycemia is associated with morbidity in critically ill children with meningococcal sepsis. Pediatr Crit Care Med 2008; 9 (06) 636-640
  • 138 van Waardenburg DA, Jansen TC, Vos GD, Buurman WA. Hyperglycemia in children with meningococcal sepsis and septic shock: the relation between plasma levels of insulin and inflammatory mediators. J Clin Endocrinol Metab 2006; 91 (10) 3916-3921
  • 139 Ahmad S, Khalid R. Blood glucose levels in neonatal sepsis and probable sepsis and its association with mortality. J Coll Physicians Surg Pak 2012; 22 (01) 15-18
  • 140 Hirasawa H, Oda S, Nakamura M. Blood glucose control in patients with severe sepsis and septic shock. World J Gastroenterol 2009; 15 (33) 4132-4136
  • 141 Klein GW, Hojsak JM, Schmeidler J, Rapaport R. Hyperglycemia and outcome in the pediatric intensive care unit. J Pediatr 2008; 153 (03) 379-384
  • 142 Branco RG, Garcia PC, Piva JP, Casartelli CH, Seibel V, Tasker RC. Glucose level and risk of mortality in pediatric septic shock. Pediatr Crit Care Med 2005; 6 (04) 470-472
  • 143 Sanchez GJ, Venkataraman PS, Pryor RW, Parker MK, Fry HD, Blick KE. Hypercalcitoninemia and hypocalcemia in acutely ill children: studies in serum calcium, blood ionized calcium, and calcium-regulating hormones. J Pediatr 1989; 114 (06) 952-956
  • 144 Zaloga GP, Chernow B. The multifactorial basis for hypocalcemia during sepsis. Studies of the parathyroid hormone-vitamin D axis. Ann Intern Med 1987; 107 (01) 36-41
  • 145 Müller B, Becker KL, Kränzlin M. , et al. Disordered calcium homeostasis of sepsis: association with calcitonin precursors. Eur J Clin Invest 2000; 30 (09) 823-831
  • 146 Hobai IA, Edgecomb J, LaBarge K, Colucci WS. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 2015; 43 (01) 3-15
  • 147 Kovacs A, Courtois MR, Barzilai B, Karl IE, Ludbrook PA, Hotchkiss RS. Reversal of hypocalcemia and decreased afterload in sepsis. Effect on myocardial systolic and diastolic function. Am J Respir Crit Care Med 1998; 158 (06) 1990-1998
  • 148 Porcelli Jr PJ, Oh W. Effects of single dose calcium gluconate infusion in hypocalcemic preterm infants. Am J Perinatol 1995; 12 (01) 18-21
  • 149 Forsythe RM, Wessel CB, Billiar TR, Angus DC, Rosengart MR. Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev 2008; (04) CD006163 . Doi: 10.1002/14651858.CD006163.pub2