J Pediatr Infect Dis 2018; 13(02): 113-121
DOI: 10.1055/s-0037-1607233
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Immunobiology of Pediatric Tuberculosis: Lessons Learned and Implications for an Improved TB-Vaccine

Mardi C. Boer
1   Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States
,
Deborah A. Lewinsohn
1   Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States
,
Christina L. Lancioni
1   Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States
› Author Affiliations
Further Information

Publication History

17 March 2017

27 April 2017

Publication Date:
05 October 2017 (online)

Abstract

Children, especially neonates and young infants, are uniquely vulnerable to tuberculosis (TB) and frequently present with primary progressive pulmonary or disseminated disease. There is an urgent need to understand the unique immunobiology of Mycobacterium tuberculosis (Mtb) in young infants and to identify protective infant immune responses. The existing vaccine against TB, Mycobacterium bovis bacillus Calmette–Guérin (M. bovis BCG), provides a partial protection against TB disease and disseminated forms of TB in infants; however, it is unknown how this partial protection is mediated. To end pediatric TB morbidity and mortality, a fully efficacious next-generation TB-vaccine is needed. Here, we focus on our current understanding of TB immunobiology as it pertains to young infants, and we evaluate what BCG-vaccination, as well as recently trialed novel TB-vaccines, has taught us about the immunobiology of mycobacterial infection in this population.

 
  • References

  • 1 Marais BJ, Gie RP, Schaaf HS, Beyers N, Donald PR, Starke JR. Childhood pulmonary tuberculosis: old wisdom and new challenges. Am J Respir Crit Care Med 2006; 173 (10) 1078-1090
  • 2 Marais BJ, Gie RP, Schaaf HS. , et al. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis 2004; 8 (04) 392-402
  • 3 Colditz GA, Berkey CS, Mosteller F. , et al. The efficacy of bacillus Calmette-Guérin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 1995; 96 (1 Pt 1): 29-35
  • 4 Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006; 367 (9517): 1173-1180
  • 5 Nuttall JJ, Davies MA, Hussey GD, Eley BS. Bacillus Calmette-Guérin (BCG) vaccine-induced complications in children treated with highly active antiretroviral therapy. Int J Infect Dis 2008; 12 (06) e99-e105
  • 6 World Health Organization. The End TB Strategy. Geneva: WHO Press; 2015. , WHO/HTM/TB/2015.19
  • 7 Ottenhoff TH, Ellner JJ, Kaufmann SH. Ten challenges for TB biomarkers. Tuberculosis (Edinb) 2012; 92 (Suppl. 01) S17-S20
  • 8 Karp CL, Wilson CB, Stuart LM. Tuberculosis vaccines: barriers and prospects on the quest for a transformative tool. Immunol Rev 2015; 264 (01) 363-381
  • 9 Schlesinger LS. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 1993; 150 (07) 2920-2930
  • 10 Juárez E, Carranza C, Hernández-Sánchez F. , et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur J Immunol 2012; 42 (04) 880-889
  • 11 Kleinnijenhuis J, Joosten LA, van de Veerdonk FL. , et al. Transcriptional and inflammasome-mediated pathways for the induction of IL-1beta production by Mycobacterium tuberculosis . Eur J Immunol 2009; 39 (07) 1914-1922
  • 12 Ferwerda G, Girardin SE, Kullberg BJ. , et al. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis . PLoS Pathog 2005; 1 (03) 279-285
  • 13 Hirsch CS, Ellner JJ, Russell DG, Rich EA. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 1994; 152 (02) 743-753
  • 14 Robinson CM, Jung JY, Nau GJ. Interferon-γ, tumor necrosis factor, and interleukin-18 cooperate to control growth of Mycobacterium tuberculosis in human macrophages. Cytokine 2012; 60 (01) 233-241
  • 15 Rivas-Santiago B, Hernandez-Pando R, Carranza C. , et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 2008; 76 (03) 935-941
  • 16 Flynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 2011; 4 (03) 271-278
  • 17 Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 2012; 37 (05) 771-783
  • 18 Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010; 8 (04) 296-307
  • 19 Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol 2006; 177 (03) 1956-1966
  • 20 Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol 2004; 173 (07) 4627-4634
  • 21 Kollmann TR, Crabtree J, Rein-Weston A. , et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 2009; 183 (11) 7150-7160
  • 22 Hall NB, Igo Jr RP, Malone LL. , et al; Tuberculosis Research Unit (TBRU). Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 2015; 16 (02) 127-133
  • 23 Qi H, Sun L, Wu X. , et al. Toll-like receptor 1(TLR1) Gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis (Edinb) 2015; 95 (02) 197-203
  • 24 Dalgic N, Tekin D, Kayaalti Z. , et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol 2011; 72 (05) 440-445
  • 25 Shey MS, Nemes E, Whatney W. , et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol 2014; 192 (10) 4833-4843
  • 26 Sepulveda RL, Arredondo S, Rodriguez E, Gonzalez B, Leiva LE, Sorensen RU. Effect of human newborn BCG immunization on monocyte viability and function at 3 months of age. Int J Tuberc Lung Dis 1997; 1 (02) 122-127
  • 27 Warren E, Teskey G, Venketaraman V. Effector mechanisms of neutrophils within the innate immune system in response to Mycobacterium tuberculosis infection. J Clin Med 2017; 6 (02) 6
  • 28 Eum SY, Kong JH, Hong MS. , et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 2010; 137 (01) 122-128
  • 29 Kisich KO, Higgins M, Diamond G, Heifets L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun 2002; 70 (08) 4591-4599
  • 30 Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 2012; 12 (03) 301-312
  • 31 Chirico G, Marconi M, De Amici M. , et al. Deficiency of neutrophil bactericidal activity in term and preterm infants. A longitudinal study. Biol Neonate 1985; 47 (03) 125-129
  • 32 Carr R. Neutrophil production and function in newborn infants. Br J Haematol 2000; 110 (01) 18-28
  • 33 Sakai S, Mayer-Barber KD, Barber DL. Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis . Curr Opin Immunol 2014; 29: 137-142
  • 34 Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog 2012; 8 (02) e1002464
  • 35 Braitstein P, Nyandiko W, Vreeman R. , et al. The clinical burden of tuberculosis among human immunodeficiency virus-infected children in Western Kenya and the impact of combination antiretroviral treatment. Pediatr Infect Dis J 2009; 28 (07) 626-632
  • 36 Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178 (06) 2243-2247
  • 37 Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002; 20: 581-620
  • 38 Lyadova IV, Panteleev AV. Th1 and Th17 Cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm 2015; 2015: 854507
  • 39 Nandi B, Behar SM. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 2011; 208 (11) 2251-2262
  • 40 Lewis DB, Yu CC, Meyer J, English BK, Kahn SJ, Wilson CB. Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest 1991; 87 (01) 194-202
  • 41 Vekemans J, Ota MO, Wang EC. , et al. T cell responses to vaccines in infants: defective IFNgamma production after oral polio vaccination. Clin Exp Immunol 2002; 127 (03) 495-498
  • 42 Rowe J, Macaubas C, Monger TM. , et al. Antigen-specific responses to diphtheria-tetanus-acellular pertussis vaccine in human infants are initially Th2 polarized. Infect Immun 2000; 68 (07) 3873-3877
  • 43 Wilson CB, Westall J, Johnston L, Lewis DB, Dower SK, Alpert AR. Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest 1986; 77 (03) 860-867
  • 44 Sinnott BD, Park B, Boer MC, Lewinsohn DA, Lancioni CL. Direct TLR-2 costimulation unmasks the proinflammatory potential of neonatal CD4+ T cells. J Immunol 2016; 197 (01) 68-77
  • 45 Lewinsohn DA, Zalwango S, Stein CM. , et al. Whole blood interferon-gamma responses to mycobacterium tuberculosis antigens in young household contacts of persons with tuberculosis in Uganda. PLoS One 2008; 3 (10) e3407
  • 46 Lancioni C, Nyendak M, Kiguli S. , et al; Tuberculosis Research Unit. CD8+ T cells provide an immunologic signature of tuberculosis in young children. Am J Respir Crit Care Med 2012; 185 (02) 206-212
  • 47 Sterling TR, Martire T, de Almeida AS. , et al. Immune function in young children with previous pulmonary or miliary/meningeal tuberculosis and impact of BCG vaccination. Pediatrics 2007; 120 (04) e912-e921
  • 48 Soares AP, Scriba TJ, Joseph S. , et al. Bacillus Calmette-Guérin vaccination of human newborns induces T cells with complex cytokine and phenotypic profiles. J Immunol 2008; 180 (05) 3569-3577
  • 49 Kagina BM, Abel B, Scriba TJ. , et al; other members of the South African Tuberculosis Vaccine Initiative. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med 2010; 182 (08) 1073-1079
  • 50 Smith SG, Zelmer A, Blitz R, Fletcher HA, Dockrell HM. Polyfunctional CD4 T-cells correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis BCG-vaccination of infants. Vaccine 2016; 34 (44) 5298-5305
  • 51 Vekemans J, Amedei A, Ota MO. , et al. Neonatal bacillus Calmette-Guérin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. Eur J Immunol 2001; 31 (05) 1531-1535
  • 52 Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol 2013; 2013: 781320
  • 53 Pavan Kumar N, Anuradha R, Andrade BB. , et al. Circulating biomarkers of pulmonary and extrapulmonary tuberculosis in children. Clin Vaccine Immunol 2013; 20 (05) 704-711
  • 54 Darrah PA, Patel DT, De Luca PM. , et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007; 13 (07) 843-850
  • 55 Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis . Front Immunol 2014; 5: 180
  • 56 Ritz N, Strach M, Yau C. , et al. A comparative analysis of polyfunctional T cells and secreted cytokines induced by Bacille Calmette-Guérin immunisation in children and adults. PLoS One 2012; 7 (07) e37535
  • 57 Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 2014; 12 (04) 289-299
  • 58 Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015; 264 (01) 74-87
  • 59 Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37 (03) 239-249
  • 60 Lewinsohn DA, Winata E, Swarbrick GM. , et al. Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog 2007; 3 (09) 1240-1249
  • 61 Tang ST, van Meijgaarden KE, Caccamo N. , et al. Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. J Immunol 2011; 186 (02) 1068-1080
  • 62 Lalvani A, Brookes R, Wilkinson RJ. , et al. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 1998; 95 (01) 270-275
  • 63 Lewinsohn DM, Alderson MR, Briden AL, Riddell SR, Reed SG, Grabstein KH. Characterization of human CD8+ T cells reactive with Mycobacterium tuberculosis-infected antigen-presenting cells. J Exp Med 1998; 187 (10) 1633-1640
  • 64 Murray RA, Mansoor N, Harbacheuski R. , et al. Bacillus Calmette Guerin vaccination of human newborns induces a specific, functional CD8+ T cell response. J Immunol 2006; 177 (08) 5647-5651
  • 65 Khader SA, Gopal R. IL-17 in protective immunity to intracellular pathogens. Virulence 2010; 1 (05) 423-427
  • 66 Scriba TJ, Kalsdorf B, Abrahams DA. , et al. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 2008; 180 (03) 1962-1970
  • 67 Chen YC, Chin CH, Liu SF. , et al. Prognostic values of serum IP-10 and IL-17 in patients with pulmonary tuberculosis. Dis Markers 2011; 31 (02) 101-110
  • 68 Li Q, Li J, Tian J. , et al. IL-17 and IFN-γ production in peripheral blood following BCG vaccination and Mycobacterium tuberculosis infection in human. Eur Rev Med Pharmacol Sci 2012; 16 (14) 2029-2036
  • 69 Jurado JO, Pasquinelli V, Alvarez IB. , et al. IL-17 and IFN-γ expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease. J Leukoc Biol 2012; 91 (06) 991-1002
  • 70 Basile JI, Geffner LJ, Romero MM. , et al. Outbreaks of Mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis 2011; 204 (07) 1054-1064
  • 71 Marín ND, París SC, Rojas M, García LF. Reduced frequency of memory T cells and increased Th17 responses in patients with active tuberculosis. Clin Vaccine Immunol 2012; 19 (10) 1667-1676
  • 72 Boer MC, Joosten SA, Ottenhoff TH. Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination. Front Immunol 2015; 6: 217
  • 73 Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front Microbiol 2014; 5: 477
  • 74 Boer MC, Prins C, van Meijgaarden KE, van Dissel JT, Ottenhoff TH, Joosten SA. Mycobacterium bovis BCG vaccination induces divergent proinflammatory or regulatory T cell responses in adults. Clin Vaccine Immunol 2015; 22 (07) 778-788
  • 75 Urdahl KB. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol 2014; 26 (06) 578-587
  • 76 Godfrey WR, Spoden DJ, Ge YG. , et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105 (02) 750-758
  • 77 Wing K, Larsson P, Sandström K, Lundin SB, Suri-Payer E, Rudin A. CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 2005; 115 (04) 516-525
  • 78 Wang G, Miyahara Y, Guo Z, Khattar M, Stepkowski SM, Chen W. “Default” generation of neonatal regulatory T cells. J Immunol 2010; 185 (01) 71-78
  • 79 Fan H, Yang J, Hao J. , et al. Comparative study of regulatory T cells expanded ex vivo from cord blood and adult peripheral blood. Immunology 2012; 136 (02) 218-230
  • 80 Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol 2015; 16 (11) 1114-1123
  • 81 Van Rhijn I, Moody DB. Donor unrestricted T cells: a shared human T cell response. J Immunol 2015; 195 (05) 1927-1932
  • 82 Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis . Immunol Rev 2015; 264 (01) 154-166
  • 83 Le Bourhis L, Martin E, Péguillet I. , et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 2010; 11 (08) 701-708
  • 84 Gold MC, McLaren JE, Reistetter JA. , et al. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med 2014; 211 (08) 1601-1610
  • 85 Gold MC, Eid T, Smyk-Pearson S. , et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 2013; 6 (01) 35-44
  • 86 Greene JM, Dash P, Roy S. , et al. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol 2017; 10 (03) 802-813
  • 87 Montamat-Sicotte DJ, Millington KA, Willcox CR. , et al. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 2011; 121 (06) 2493-2503
  • 88 Van Rhijn I, Moody DB. CD1 and mycobacterial lipids activate human T cells. Immunol Rev 2015; 264 (01) 138-153
  • 89 Heinzel AS, Grotzke JE, Lines RA. , et al. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J Exp Med 2002; 196 (11) 1473-1481
  • 90 van Meijgaarden KE, Haks MC, Caccamo N, Dieli F, Ottenhoff TH, Joosten SA. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog 2015; 11 (03) e1004671
  • 91 Caccamo N, Pietra G, Sullivan LC. , et al. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 2015; 45 (04) 1069-1081
  • 92 Joosten SA, van Meijgaarden KE, van Weeren PC. , et al. Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog 2010; 6 (02) e1000782
  • 93 Tsuyuguchi I, Kawasumi H, Ueta C, Yano I, Kishimoto S. Increase of T-cell receptor gamma/delta-bearing T cells in cord blood of newborn babies obtained by in vitro stimulation with mycobacterial cord factor. Infect Immun 1991; 59 (09) 3053-3059
  • 94 Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNγ response in Bacille Calmette-Guérin (BCG)-immunized infants. PLoS One 2013; 8 (10) e77334
  • 95 Rao M, Valentini D, Poiret T. , et al. B in TB: B cells as mediators of clinically relevant immune responses in tuberculosis. Clin Infect Dis 2015; (61) (Suppl. 03) S225-S234
  • 96 Lu LL, Chung AW, Rosebrock TR. , et al. A functional role for antibodies in tuberculosis. Cell 2016; 167 (02) 433-443.e14
  • 97 Chen T, Blanc C, Eder AZ. , et al. Association of human antibodies to arabinomannan with enhanced mycobacterial opsonophagocytosis and intracellular growth reduction. J Infect Dis 2016; 214 (02) 300-310
  • 98 Gold R, Lepow ML, Goldschneider I, Draper TL, Gotschlich EC. Clinical evaluation of group A and group C meningococcal polysaccharide vaccines in infants. J Clin Invest 1975; 56 (06) 1536-1547
  • 99 Borgoño JM, McLean AA, Vella PP. , et al. Vaccination and revaccination with polyvalent pneumococcal polysaccharide vaccines in adults and infants. Proc Soc Exp Biol Med 1978; 157 (01) 148-154
  • 100 Fletcher HA, Snowden MA, Landry B. , et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun 2016; 7: 11290
  • 101 Aaby P, Kollmann TR, Benn CS. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol 2014; 15 (10) 895-899
  • 102 Ota MO, Vekemans J, Schlegel-Haueter SE. , et al. Influence of Mycobacterium bovis bacillus Calmette-Guérin on antibody and cytokine responses to human neonatal vaccination. J Immunol 2002; 168 (02) 919-925
  • 103 Ritz N, Mui M, Balloch A, Curtis N. Non-specific effect of Bacille Calmette-Guérin vaccine on the immune response to routine immunisations. Vaccine 2013; 31 (30) 3098-3103
  • 104 Libraty DH, Zhang L, Woda M. , et al. Neonatal BCG vaccination is associated with enhanced T-helper 1 immune responses to heterologous infant vaccines. Trials Vaccinol 2014; 3: 1-5
  • 105 Pang Y, Zhao A, Cohen C. , et al. Current status of new tuberculosis vaccine in children. Hum Vaccin Immunother 2016; 12 (04) 960-970
  • 106 Kleinnijenhuis J, Quintin J, Preijers F. , et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 2012; 109 (43) 17537-17542
  • 107 Jensen KJ, Larsen N, Biering-Sørensen S. , et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J Infect Dis 2015; 211 (06) 956-967
  • 108 Saeed S, Quintin J, Kerstens HH. , et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014; 345 (6204): 1251086
  • 109 Cheng SC, Quintin J, Cramer RA. , et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014; 345 (6204): 1250684
  • 110 Buffen K, Oosting M, Quintin J. , et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 2014; 10 (10) e1004485
  • 111 Arts RJ, Carvalho A, La Rocca C. , et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Reports 2016; 17 (10) 2562-2571
  • 112 Kleinnijenhuis J, Quintin J, Preijers F. , et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol 2014; 155 (02) 213-219
  • 113 Kleinnijenhuis J, van Crevel R, Netea MG. Trained immunity: consequences for the heterologous effects of BCG vaccination. Trans R Soc Trop Med Hyg 2015; 109 (01) 29-35
  • 114 Scriba TJ, Kaufmann SH, Henri Lambert P, Sanicas M, Martin C, Neyrolles O. Vaccination against tuberculosis with whole-cell mycobacterial vaccines. J Infect Dis 2016; 214 (05) 659-664
  • 115 Tameris MD, Hatherill M, Landry BS. , et al; MVA85A 020 Trial Study Team. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013; 381 (9871): 1021-1028
  • 116 Scriba TJ, Tameris M, Mansoor N. , et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 2011; 203 (12) 1832-1843
  • 117 Orme IM. The Achilles heel of BCG. Tuberculosis (Edinb) 2010; 90 (06) 329-332
  • 118 Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401 (6754): 708-712
  • 119 Tameris M, Geldenhuys H, Luabeya AK. , et al. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PLoS One 2014; 9 (02) e87340
  • 120 Tameris M, Hokey DA, Nduba V. , et al. A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants. Vaccine 2015; 33 (25) 2944-2954
  • 121 Idoko OT, Owolabi OA, Owiafe PK. , et al. Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis (Edinb) 2014; 94 (06) 564-578
  • 122 Loxton AG, Knaul JK, Grode L. , et al; VPM Study Group. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol 2017; 24 (02) 24
  • 123 Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346 (8986): 1339-1345
  • 124 Palmer CE, Long MW. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am Rev Respir Dis 1966; 94 (04) 553-568
  • 125 Andersen P, Doherty TM. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 2005; 3 (08) 656-662
  • 126 Lalor MK, Ben-Smith A, Gorak-Stolinska P. , et al. Population differences in immune responses to Bacille Calmette-Guérin vaccination in infancy. J Infect Dis 2009; 199 (06) 795-800
  • 127 Lalor MK, Floyd S, Gorak-Stolinska P. , et al. BCG vaccination induces different cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis 2011; 204 (07) 1075-1085
  • 128 Scriba TJ, Tameris M, Mansoor N. , et al. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 2010; 40 (01) 279-290
  • 129 Malhotra I, Ouma J, Wamachi A. , et al. In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest 1997; 99 (07) 1759-1766
  • 130 Rahman MJ, Dégano IR, Singh M, Fernández C. Influence of maternal gestational treatment with mycobacterial antigens on postnatal immunity in an experimental murine model. PLoS One 2010; 5 (03) e9699
  • 131 Jaganath D, Mupere E. Childhood tuberculosis and malnutrition. J Infect Dis 2012; 206 (12) 1809-1815
  • 132 Verway M, Bouttier M, Wang TT. , et al. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog 2013; 9 (06) e1003407