Synlett 2018; 29(04): 375-382
DOI: 10.1055/s-0037-1609093
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Methylation of (Hetero)Arenes by Cross-Coupling or C–H Activation

Lu Hu
a   Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, P. R. of China   Email: liaoxuebin@mail.tsinghua.edu.cn
,
b   Discovery Chemistry, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA   Email: yliu2@gnf.org
,
a   Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, P. R. of China   Email: liaoxuebin@mail.tsinghua.edu.cn
› Author Affiliations
This work was supported by the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua–Peking Centre for Life Sciences and by the 1000 Talents Recruitment Program.
Further Information

Publication History

Received: 24 October 2017

Accepted after revision: 20 December 2017

Publication Date:
05 February 2018 (online)


Abstract

Owing to the ‘magic methyl effect’ on a compound’s physical and biological properties, methylation is a strategy frequently used by medicinal chemists in structure–activity relationship studies or in lead optimization. This article highlights the most recent reported methods for the direct methylation of (hetero)arenes, which mainly involve either C–H functionalization or cross-coupling of methylating reagents with (hetero)aryl halides. Methylation of C–H bonds of (hetero)-arenes, which is atom economical, has been explored by several research groups in recent years. Given the unmatchable availability of (hetero)aryl halides, we believe that Ni-catalyzed methylation using iodomethane or deuterated iodomethane as the methyl source is one of the most convenient methods.

 
  • References

  • 2 Only the methyl groups connected to carbon are counted; therefore, ethyl is viewed as methylated methyl. Likewise, n-propyl, isopropyl, t-butyl, etc. are included.
    • 4a Hoffman WF. Alberts AW. Anderson PS. Chen JS. Smith RL. Willard AK. J. Med. Chem. 1986; 29: 849
    • 4b Gomtsyan A. Bayburt EK. Keddy R. Turner SC. Jinkerson TK. Didomenico S. Perner RJ. Koenig JR. Drizin I. McDonald HA. Surowy CS. Honore P. Mikusa J. Marsh KC. Wetter JM. Faltynek CR. Lee C.-H. Bioorg. Med. Chem. Lett. 2007; 17: 3894
    • 4c Bahl A. Barton P. Bowers K. Caffrey MV. Denton R. Gilmour P. Hawley S. Linannen T. Luckhurst C. Mochel AT. Perry MW. D. Riley RJ. Roe E. Springthorpe B. Stein L. Webborn P. Bioorg. Med. Chem. Lett. 2012; 22: 6694
  • 5 Ginnings PM. Baum R. J. Am. Chem. Soc. 1937; 59: 1111
    • 6a Li L. Beaulieu C. Carriere M.-C. Denis D. Greig G. Guay D. O’Neill G. Zamboni R. Wang Z. Bioorg. Med. Chem. Lett. 2010; 20: 7462
    • 6b Zhang L. Brodney MA. Candler J. Doran AC. Duplantier AJ. Efremov IV. Evrard E. Kraus K. Ganong AH. Haas JA. Hanks AN. Jenza K. Lazzaro JT. Maklad N. McCarthy SA. Qian W. Rogers BN. Rottas MD. Schmidt CJ. Siuciak JA. Tingley FD. III. Zhang AQ. J. Med. Chem. 2011; 54: 1724
    • 6c Pasternak A. Goble SD. Struthers M. Vicario PP. Ayala JM. Di Salvo J. Kilburn R. Wisniewski T. DeMartino JA. Mills SG. Yang L. ACS Med. Chem. Lett. 2010; 1: 14
    • 7a Goodman AJ. Le Bourdonnec B. Dolle RE. ChemMedChem 2007; 2: 1552
    • 7b McElvain SM. Clemens DH. J. Am. Chem. Soc. 1958; 80: 3915
    • 8a Halford B. Chem. Eng. News 2016; 94 (issue 32): 9
    • 8b Yarnell A. Chem. Eng. News 2009; 87 (issue 25): 36
    • 9a Thayer AM. Chem. Eng. News 2017; 95 (issue 11): 13
    • 9b Mullard A. Nat. Rev. Drug Discov. 2017; 16: 305
  • 10 Schönherr H. Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 11 Wakefield BJ. The Chemistry of Organolithium Compounds . Pergamon; Oxford: 1974
  • 12 Mosrin M. Knochel P. Chem. Eur. J. 2009; 15: 1468
    • 13a Snieckus V. Chem. Rev. 1990; 90: 879
    • 13b Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 13c Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
  • 14 Yan G. Borah AJ. Wang L. Yang M. Adv. Synth. Catal. 2015; 357: 1333
  • 15 Choi J. Fu GC. Science 2017; 356: eaaf7230 ; DOI: 10.1126/science.aaf7230.

    • For selected examples, see:
    • 16a Bégouin J.-M. Gosmini C. J. Org. Chem. 2009; 74: 3221
    • 16b Gomes P. Gosmini C. Périchon J. Org. Lett. 2003; 5: 1043
    • 16c Amatore M. Gosmini C. Angew. Chem. 2008; 120: 2119 ; Angew. Chem. Int. Ed. 2008, 47, 2089
    • 16d Krasovskiy A. Duplais C. Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 16e Wang L. Zhang Y. Liu L. Wang Y. J. Org. Chem. 2006; 71: 1284
    • 16f Gosmini C. Bassene-Ernst C. Durandetti M. Tetrahedron 2009; 65: 6141
    • 16g Czaplik WM. Mayer M. von Wangelin AJ. Angew. Chem. 2009; 121: 616 ; Angew. Chem. Int. Ed. 2009, 48, 607
    • 16h Kazmierski I. Bastienne M. Gosmini C. Paris J.-M. Périchon J. J. Org. Chem. 2004; 69: 936

      For some elegant work, see:
    • 17a Everson DA. Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 17b Biswas S. Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
    • 17c Knappke CE. I. Grupe S. Gärtner D. Corpet M. Gosmini C. von Wangelin AJ. Chem. Eur. J. 2014; 20: 6828
    • 17d Anka-Lufford LL. Prinsell MR. Weix DJ. J. Org. Chem. 2012; 77: 9989
    • 17e Ackerman LK. G. Anka-Lufford LL. Naodovic M. Weix D. Chem. Sci. 2015; 6: 1115
  • 18 Weix DJ. Acc. Chem. Res. 2015; 48: 1767
  • 19 Hatanaka Y. Hiyama T. Tetrahedron Lett. 1988; 29: 97
    • 20a Baidossi W. Rosenfeld A. Wassermann BC. Schutte S. Schumann H. Blum J. Synthesis 1996; 1127
    • 20b Blum J. Gelman D. Baidossi W. Shakh E. Rosenfeld A. Aizenshtat Z. Wassermann BC. Frick M. Heymer B. Schutte S. Wernik S. Schumann H. J. Org. Chem. 1997; 62: 8681
    • 20c Blum J. Berlin O. Milstein D. Ben-David Y. Wassermann BC. Schutte S. Schumann H. Synthesis 2000; 571
    • 20d Gelman D. Schumann H. Blum J. Tetrahedron Lett. 2000; 41: 7555
  • 21 Cooper T. Novak A. Humphreys LD. Walker MD. Woodward S. Adv. Synth. Catal. 2006; 348: 686
  • 22 Wang T. Alfonso BJ. Love JA. Org. Lett. 2007; 9: 5629
    • 23a Guan B.-T. Xiang S.-K. Wu T. Sun Z.-P. Wang B.-Q. Zhao K.-Q. Shi Z.-J. Chem. Commun. 2008; 1437
    • 23b Agrawal T. Cook SP. Org. Lett. 2014; 16: 5080
  • 24 Redeker KR. Wang N.-Y. Low JC. McMillan A. Tyler SC. Cicerone RJ. Science 2000; 290: 966
  • 25 US Environmental Protection Agency; Pesticide Fact Sheet: Iodomethane; https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-000011_01-Jan-07.pdf.
  • 26 Hu L. Liu X. Liao X. Angew. Chem. Int. Ed. 2016; 55: 9743
  • 27 Zhang C. Sommers A. WO 2012122165, 2012
  • 28 Falb E. Ulanenko K. Tor A. Gottesfeld R. Weitman M. Afri M. Gottliebb H. Hassner A. Green Chem. 2017; 19: 5046
  • 29 Schley ND. Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
  • 30 Zhang C.-P. Wang H. Klein A. Biewer C. Stirnat K. Yamaguchi Y. Xu L. Gomez-Benitez VG. Vicic DA. J. Am. Chem. Soc. 2013; 135: 8141
    • 31a Phapale VB. Guisán-Ceinos M. Buñuel E. Cárdenas DJ. Chem. Eur. J. 2009; 15: 12681
    • 31b Phapale VB. Cárdenas DJ. Chem. Soc. Rev. 2009; 38: 1598
  • 32 A Ni0/NiII catalytic cycle was reported in a nickel-catalyzed aryl–aryl coupling; see: Nicolas E. Ohleier A. D’Accriscio F. Pecharman A.-F. Demange M. Ribagnac P. Ballester J. Gosmini C. Mezailles N. Chem. Eur. J. 2015; 21: 7690
    • 33a Barsky L. Gschwend HW. McKenna J. Rodriguez HR. J. Org. Chem. 1976; 41: 3651
    • 33b Townsend CA. Bloom LM. Tetrahedron Lett. 1981; 22: 3923
  • 34 Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron 1971; 27: 3575
    • 35a Tremont SJ. Ur Rahman H. J. Am. Chem. Soc. 1984; 106: 5759
    • 35b McCallum JS. Gasdaska JR. Liebeskind LS. Tremont SJ. Tetrahedron Lett. 1989; 30: 4085
  • 36 Chen X. Li J.-J. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 78
    • 37a Romero-Revilla JA. García-Rubia A. Goméz Arrayás R. Fernández-Ibáñez MA. Carretero JC. J. Org. Chem. 2011; 76: 9525
    • 37b Giri R. Maugel N. Li J. Wang D. Breazzano SP. Saunders LB. Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
  • 38 Neufeldt SR. Seigerman CK. Sanford MS. Org. Lett. 2013; 15: 2302
  • 39 Chen Q. Ilies L. Yoshikai N. Nakamura E. Org. Lett. 2011; 13: 3232
    • 40a Yao B. Song R.-J. Liu Y. Xie Y.-X. Li J.-H. Wang M.-K. Tang R.-Y. Zhang X.-G. Deng C.-L. Adv. Synth. Catal. 2012; 354: 1890
    • 40b Pan F. Lei Z.-Q. Wang H. Li H. Sun J. Shi Z.-J. Angew. Chem. 2013; 125: 2117 ; Angew. Chem. Int. Ed. 2013, 52, 2063
  • 41 Zhang Y. Feng J. Li C.-J. J. Am. Chem. Soc. 2008; 130: 2900
    • 42a Verrier C. Hoarau C. Marsais F. Org. Biomol. Chem. 2009; 7: 647
    • 42b Jang MJ. Youn SW. Bull. Korean Chem. Soc. 2011; 32: 2865
    • 42c Zhao Z. Chen G. Org. Lett. 2011; 13: 4850
  • 43 Li Y. Yan T. Junge K. Beller M. Angew. Chem. Int. Ed. 2014; 53: 10476
  • 44 Gui J. Zhou Q. Pan C.-M. Yabe Y. Burns AC. Collins MR. Ornelas MA. Ishihara Y. Baran PS. J. Am. Chem. Soc. 2014; 136: 4853
    • 45a Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 45b Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2014; 138: 10132
  • 46 Zhu N. Zhao J. Bao H. Chem. Sci. 2017; 8: 2081