Synlett 2018; 29(12): 1639-1643
DOI: 10.1055/s-0037-1610026
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Construction of 3-Phthalimido-1,5-benzodiazepine-2-one Derivatives via in situ Activation of N,N-Phthaloyl-serine

Nobuhiro Obara*
a   Zeria Pharmaceutical Co., Ltd, 2512-1, Numagami, Oshikiri, Kumagaya-city, Saitama 360-0111, Japan
,
Takeshi Watanabe
b   School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan
,
Tomohiro Asakawa
b   School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan
c   Tokai University Institute of Innovative Science and Technology, 4-1-1, Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan
,
Toshiyuki Kan
b   School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka-city, Shizuoka 422-8526, Japan
,
Takao Tanaka
a   Zeria Pharmaceutical Co., Ltd, 2512-1, Numagami, Oshikiri, Kumagaya-city, Saitama 360-0111, Japan
› Author Affiliations
Further Information

Publication History

Received: 08 March 2018

Accepted after revision: 01 May 2018

Publication Date:
07 June 2018 (online)


Abstract

The Michael addition of dehydroalanine-activated ester in situ generated from N,N-phthaloyl-serine with o-phenylenediamine followed by cyclization has been established under mild conditions, which afforded 3-phthalimido-1,5-benzodiazepine-2-one derivatives in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Hoyt SB. London C. Wyvratt MJ. Fisher MH. Cashen DE. Felix JP. Garcia ML. Li X. Lyons KA. MacIntyre DE. Martin WJ. Priest BT. Smith MM. Warren VA. Williams BS. Kaczorowski GJ. Parsons WH. Bioorg. Med. Chem. Lett. 2008; 18: 1963
    • 1b Williams BS. Felix JP. Priest BT. Brochu RM. Dai K. Hoyt SB. London C. Tang YS. Duffy JL. Parsons WH. Kaczorowski GJ. Garcia ML. Biochemistry 2007; 46: 14693
  • 2 Churcher I. Williams S. Kerrad S. Harrison T. Castro JL. Shearman MS. Lewis HD. Clarke EE. Wrigley JD. J. Beher D. Tang YS. Liu W. J. Med. Chem. 2003; 46: 2275
  • 3 Kester RF. Donnell AF. Lou Y. Remiswzewski SW. Lombardo LJ. Chen S. Le NT. Lo J. Moliterni JA. Han X. Hogg JH. Liang W. Michoud C. Rupert KC. Mischke S. Le K. Weisel M. Janson CA. Lukacs CM. Fretland AJ. Hong K. Polonskaia A. Gao L. Li S. Solis DS. Aguilar D. Tardell C. Dvorozniak M. Tannu S. Lee EC. Schutt AD. Goggin B. J. Med. Chem. 2013; 56: 7788
  • 4 Lauffer DJ. Mullican MD. Bioorg. Med. Chem. Lett. 2002; 12: 1225
  • 5 Kawasaki D. Emori Y. Eta R. Iino Y. Hamano H. Yoshinaga K. Tanaka T. Takei M. Watson SA. Cancer Chemother. Pharmacol. 2008; 61: 883
    • 6a Chen S. Donnell AF. Kester RF. Le K. Lou Y. Michoud C. Remiszewski S. Rupert KC. Weisel M. WO 2015071393, 2015
    • 6b Bandyopadhyay D. Eidam PM. Gough PJ. Harris PA. Jeong JU. Kang J. King BW. Lakdawala SA. Marquis RW. Jr. Leister LK. Rahman A. Ramanjulu JM. Sheon CA. Singhaus RJr. Zhang D. WO 2014125444, 2014
    • 6c Donnell AF. Kester RF. Lou Y. Moliterni JA. Remiszewski S. WO 2014044622, 2014
    • 6d Asai M. Haketa T. Inamura S. Ishikawa M. Jona H. Kawamoto H. Kurihara H. Shibata J. Shimamura T. Suga T. Watanabe H. WO 2010084979, 2010
    • 6e Lauffer DJ. Mullican MD. Bioorg. Med. Chem. Lett. 2002; 12: 1225
    • 6f Bemis GW. Golec JM. C. Lauffer DJ. Mullican MD. Murcko MA. Livingston DJ. WO 9535308, 1995
    • 7a Claremon DA. Liverton N. Selnick HG. Smith GR. WO 9640653, 1996
    • 7b Claremon DA. Freidinger RM. Liverton N. Selnick HG. Smith GR. WO 9640656, 1996
    • 7c Carmel JS. Stanton JL. US 4477464, 1984
  • 8 Obara N. Watanabe T. Asakawa T. Kan T. Tanaka T. Synlett 2017; 28: 1183
    • 9a Donohoe TJ. Jones CR. Kornahrens AF. Barbosa LC. A. Walport LJ. Tatton MR. O’Hagan M. Rathi AH. Baker DB. J. Org. Chem. 2013; 78: 12338
    • 9b Shaw MH. Croft RA. Whittingham WG. Bower JF. J. Am. Chem. Soc. 2015; 137: 8054
    • 9c Zhang H. Li H. Yang H. Fu H. Org. Lett. 2016; 18: 3362
    • 10a Ferreira PM. T. Monteiro LS. Pereira G. Ribeiro L. Sacramento J. Silva L. Eur. J. Org. Chem. 2007; 5934
    • 10b Degnan AP. Chaturvedula PV. Conway CM. Cook DA. Davis CD. Denton R. Han X. Macci R. Mathias NR. Moench P. Pin SS. Ren SX. Schartman R. Signor LJ. Thalody G. Widmann KA. Xu C. Macor JE. Dubowchik GM. J. Med. Chem. 2008; 51: 4858
    • 10c Goodall K. Parsons AF. Tetrahedron Lett. 1995; 36: 3259
    • 10d Berti F. Ebert C. Gardossi L. Tetrahedron Lett. 1992; 33: 8145
    • 10e Navarre L. Martinez R. Genet J. Darses S. J. Am. Chem. Soc. 2008; 130: 6159
    • 10f Ramesh R. De K. Chandrasekaran S. Tetrahedron 2007; 63: 10534

      Reaction Conditions
    • 11a To a solution of 1 (4.62 mmol) and 4-methylmorpholine (4.62 mmol) in CH2Cl2 (5 mL) under an argon atmosphere at 2–4 °C was added ClCO2 i-Bu (4.62 mmol), followed by stirring for 1 min. Compound 2 (4.62 mmol) was added to the mixture, followed by stirring at room temperature for 30–40 min.
    • 11b To a solution of 1 (4.62 mmol), 2 (4.62 mmol), and NEt3 (4.62 mmol) in CH2Cl2 (5 mL) under an argon atmosphere at 2 °C was added diphenylphosphinic chloride (4.62 mmol), followed by stirring at room temperature for 1–1.5 h.
    • 11c To a solution of 1 (4.62 mmol) and DMF (5 μL) in CH2Cl2 (12 mL) under an argon atmosphere at 2 °C was added oxalyl chloride (6.93 mmol), followed by stirring at room temperature for 3 h. Excess oxalyl chloride and solvent were evaporated away to yield the crude intermediate. To a solution of 2 (4.62 mmol) in CH2Cl2 (5 mL) at 2 °C was added a solution of crude intermediate and NEt3 (4.62 mmol) in CH2Cl2 (5 mL), followed by stirring for 3 h.
  • 12 N-(2-Aminophenyl)-2-(1,3-dioxoisoindolin-2-yl)acrylamide (4a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.75 (1 H, s), 7.88–8.00 (4 H, m), 6.94–7.01 (2 H, m), 6.73 (1 H, dd, J = 8.3, 1.3 Hz), 6.55 (1 H, td, J = 7.4, 1.3 Hz), 6.46 (1 H, s), 5.91 (1 H, s), 4.82 (2 H, br) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 166.73, 161.15, 143.63, 134.77, 132.28, 131.89, 127.16, 123.50, 123.38, 121.87, 116.04, 115.63 ppm. FTIR (KBr): 3365, 1717, 1651, 1623, 1540, 1463, 1379, 1308, 887, 731 cm–1. HRMS (ESI): m/z calcd for C17H12N3O3 [M – H]: 306.0884; found: 306.0854. N,N'-(1,2-Phenylene)bis[2-(1,3-dioxoisoindolin-2-yl)acrylamide] (5a) 1H NMR (400 MHz, DMSO-d 6): δ = 9.89 (2 H, s), 7.86–7.99 (8 H, m), 7.52–7.58 (2 H, m), 7.21–7.29 (2 H, m), 6.35 (2 H, s), 5.97 (2 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 166.43, 161.30, 134.85, 131.89, 131.70, 130.02, 125.87, 125.06, 124.37, 123.64 ppm. FTIR (KBr): 3244, 1730, 1662, 1630, 1517, 1375, 1294, 1084, 886, 714 cm–1. HRMS (ESI): m/z calcd for C28H17N4O6 [M – H]: 505.1154; found: 505.1108.
  • 13 2-Aetamido-N-(2-aminophenyl)acrylamide (4b) 1H NMR (400 MHz, DMSO-d 6): δ = 9.41 (1 H, s), 9.34 (1 H, s), 7.03 (1 H, dd, J = 7.8, 1.4 Hz), 6.95 (1 H, td, J = 7.8, 1.4 Hz), 6.72 (1 H, dd, J = 7.8, 1.4 Hz), 6.54 (1 H, td, J = 7.8, 1.4 Hz), 5.81 (1 H, s), 5.47 (1 H, s), 4.90 (2 H, br), 2.01 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 169.07, 163.16, 143.68, 137.17, 126.96, 126.79, 122.21, 115.81, 115.59, 104.54, 23.51 ppm. FTIR (KBr): 3317, 1655, 1630, 1505, 1456, 1404, 1313, 1259, 887, 759, 611 cm–1. HRMS (ESI): m/z calcd for C11H14N3O2 [M + H]+: 220.1081; found: 220.1068. Benzyl {3-[(2-Aminophenyl)amino]-3-oxoprop-1-en-2-yl}carbamate (4c) 1H NMR (400 MHz, DMSO-d 6): δ = 9.51 (1 H, s), 8.94 (1 H, s), 7.30–7.44 (5 H, m), 7.02 (1 H, dd, J = 7.8, 1.4 Hz), 6.95 (1 H, td, J = 7.8, 1.4 Hz), 6.72 (1 H, dd, J = 7.8, 1.4 Hz), 6.54 (1 H, td, J = 7.8, 1.4 Hz), 5.56 (1 H, s), 5.43 (1 H, s), 5.12 (2 H, s), 4.92 (2 H, br) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 162.91, 153.55, 143.67, 137.18, 136.46, 128.42, 128.01, 127.93, 126.97, 126.86, 122.19, 115.85, 115.65, 103.34, 65.93 ppm. FTIR (KBr: 3379, 3347, 1729, 1614, 1487, 1457, 1214, 1206, 1066, 751, 699 cm–1. HRMS (ESI): m/z calcd for C17H17N3O3Na [M + Na]+: 334.1162; found: 334.1180. Dibenzyl [(1,2-Phenylenebis(azanediyl)]bis(1-oxoprop-2-ene-1,2-diyl))dicarbamate (5c) 1H NMR (400 MHz, DMSO-d 6): δ = 9.69 (2 H, s), 9.03 (2 H, s), 7.52–7.60 (2 H, m), 7.28–7.44 (10 H, m), 7.18–7.27 (2 H, m), 5.55 (2 H, s), 5.41 (2 H, s), 5.09 (4 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 163.10, 153.59, 137.25, 136.36, 130.52, 128.39, 128.00, 127.92, 125.50, 125.26, 104.74, 66.02 ppm. FTIR (KBr): 3306, 1732, 1704, 1660, 1628, 1501, 1453, 1241, 1077, 751, 697 cm–1. HRMS (ESI): m/z calcd for C28H26N4O6Na [M + Na]+: 537.1745; found: 537.1768.
  • 14 The reaction of 4a with 4-methylmolpholine hydrochloride in CH2Cl2 led to no reaction. Additionally, no cyclized form was also obtained from 4a under toluene reflux conditions.
    • 15a Naidu BN. Sorenson ME. Connolly TP. Ueda Y. J. Org. Chem. 2003; 68: 10098
    • 15b Chakor NS. Musso L. Dallavalle S. J. Org. Chem. 2009; 74: 844
    • 15c Manzoni L. Belvisi L. Scolastico C. Synlett 2000; 1287
    • 15d Le DN. Riedel J. Kozlyuk N. Martin RW. Dong VM. Org. Lett. 2017; 19: 114
    • 15e Donohoe TJ. Jones CR. Barbosa LC. A. J. Am. Chem. Soc. 2011; 133: 16418
  • 16 Two doublets (δ = 6.80 and 6.18 ppm, J = 1.0 Hz) appeared in the 1H NMR spectrum (CDCl3) of the reaction solution after the addition of ClCO2 i-Pr and 4-methylmorpholine. This indicates that the vinyl proton of dehydroalanine was generated. Similar signals were observed when other alkyl chloroformates were used.
  • 17 Reaction of 2a with N,N-Phth-serine Using ClCO2 i-Pr To a solution of N,N-Phth-serine (1.63 g, 6.93 mmol) and 4-methylmorpholine (1.53 mL, 13.9 mmol) in CH2Cl2 under an argon atmosphere at –20 °C was added ClCO2 i-Pr (1.70 g, 13.9 mmol) and 4-methylmorpholine (0.762 mL, 6.93 mmol), followed by stirring for 0.5 h. Compound 2a (500 mg, 4.62 mmol) was added to the mixture, followed by stirring at room temperature for 0.5 h. The precipitate was filtered and washed with CH2Cl2. EtOH was added to the residue and stirred for 0.5 h. The precipitate was filtered and washed with EtOH to give 3a (1.01 g, 3.29 mmol, 71% yield) as a yellow solid.
  • 18 1-Methyl-3-phthalimido-1,5-benzodiazepine-2-one (3ab) 1H NMR (400 MHz, DMSO-d 6): δ = 7.85–7.93 (4 H, m), 7.31 (1 H, dd, J = 7.9, 1.3 Hz), 7.12 (1 H, td, J = 7.9, 1.3 Hz), 7.02 (1 H, dd, J = 7.9, 1.5 Hz), 6.98 (1 H, td, J = 7.9, 1.5 Hz), 5.62 (1 H, d, J = 5.7 Hz), 4.93 (1 H, dd, J = 11.4, 5.7 Hz), 4.59 (1 H, t, J = 11.4 Hz), 3.73 (1 H, dt, J = 11.4, 5.7 Hz), 3.25 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.60, 140.63, 134.82, 132.92, 131.19, 126.66, 123.33, 123.29, 121.15, 51.06, 49.75, 36.08 ppm. FTIR (KBr): 3363, 1777, 1718, 1678, 1508, 1384, 1339, 1285, 1129, 1114, 753, 718 cm–1. HRMS (ESI): m/z calcd for C18H15N3O3Na [M + Na]+: 344.1006; found: 344.1000. 5-Methyl-3-phthalimido-1,5-benzodiazepine-2-one (3ab′) 1H NMR (400 MHz, DMSO-d 6): δ = 10.1 (1 H, s), 7.85–7.95 (4 H, m), 7.16 (1 H, td, J = 8.1, 1.6 Hz), 7.12 (1 H, dd, J = 8.1, 1.6 Hz), 7.07 (1 H, dd, J = 8.1, 1.6 Hz), 7.00 (1 H, td, J = 8.1, 1.6 Hz), 4.82 (1 H, dd, J = 11.1, 6.5 Hz), 4.41 (1 H, t, J = 11.1 Hz), 3.39 (1 H, dd, J = 11.1, 6.5 Hz), 2.85 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.89, 167.47, 141.75, 134.87, 131.16, 130.98, 125.42, 123.36, 122.01, 121.69, 119.09, 56.82, 50.68, 41.15 ppm. FTIR (KBr): 2916, 1723, 1680, 1505, 1379, 879, 717 cm–1. HRMS (ESI): m/z calcd for C18H15N3O3Na [M + Na]+: 344.1006; found: 344.0962.
  • 19 1,5-Dimethyl-3-phthalimido-1,5-benzodiazepine-2-one (3ac) 1H NMR (400 MHz, DMSO-d 6): δ = 7.85–7.93 (4 H, m), 7.42 (1 H, dd, J = 7.9, 1.5 Hz), 7.32 (1 H, td, J = 7.9, 1.5 Hz), 7.24 (1 H, dd, J = 7.9, 1.5 Hz), 7.20 (1 H, td, J = 7.9, 1.5 Hz), 4.79 (1 H, dd, J = 12.4, 6.7 Hz), 4.71 (1 H, dd, J = 12.4, 8.9 Hz), 3.20–3.28 (4 H, m), 2.80 (3 H, s) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 167.55, 166.97, 142.81, 136.58, 134.86, 131.05, 127.09, 123.46, 123.30, 122.98, 119.86, 58.04, 50.60, 40.89, 35.75 ppm. FTIR (KBr): 2946, 1718, 1670, 1503, 1387, 1349, 1275, 1123, 877, 760, 720, 519 cm–1. HRMS (ESI): m/z calcd for C19H17N3O3Na [M + Na]+: 358.1162; found: 358.1170.
  • 20 Hugenberg V. Fröhlich R. Haufe G. Org. Biomol. Chem. 2010; 8: 5682