Synlett 2018; 29(11): 1451-1554
DOI: 10.1055/s-0037-1610132
letter
© Georg Thieme Verlag Stuttgart · New York

Pharmaceutical-Oriented Methoxylation of Aryl C(sp2)–H Bonds using Copper Catalysts

Guofu Zhang
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Jianfei Zhu
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Chaolai Tong
b   Jianxing Honor College, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Chengrong Ding*
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
› Author Affiliations
We acknowledge financial support from the National Natural Science Foundation of China (no. 20702051), the Natural Science Foundation of Zhejiang Province (LY13B020017), and the Key Innovation Team of Science and Technology in Zhejiang Province (no. 2010R50018).
Further Information

Publication History

Received: 22 January 2018

Accepted after revision: 08 April 2018

Publication Date:
02 May 2018 (online)


Abstract

A pharmaceutical-oriented, copper(II)-catalyzed methoxylation of aryl C(sp2)–H bonds has been developed. This simple and environmentally benign reaction system occurs efficiently using oxygen as oxidant with broad substrate scope and high functional group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Ohkawa S. Fukatsu K. Miki S. Hashimoto T. Sakamoto J. Doi T. Nagai Y. Aono T. J. Med. Chem. 1997; 40: 559
    • 1b Esteki M. Khayamian T. Chem. Biol. Drug Des. 2008; 72: 409
    • 1c Kubo K. Kohara Y. Imamiya E. Sugiura Y. Inada Y. Furukawa Y. Nishikawa K. Naka T. J. Med. Chem. 1993; 36: 2182
    • 3a Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 3b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 3c Ackermann L. Chem. Rev. 2011; 111: 1315
    • 3d Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 3e Patureau FW. Wencel-Delord J. Glorius F. Aldrichimica Acta 2012; 45: 31
    • 3f Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3g Gunanathan C. Milstein D. Acc. Chem. Res. 2011; 44: 588
    • 4a Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 4b Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 4c Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 4d Leow D. Li G. Mei TS. Yu JQ. Nature 2012; 486: 518
    • 4e Daugulis O. Do HQ. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 4f Li BJ. Yang SD. Shi ZJ. Synlett 2008; 949
    • 4g Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843
    • 5a Liu W. Wang DY. Zhao YL. Yi F. Chen JM. Adv. Synth. Catal. 2016; 358: 1968
    • 5b Zhang YF. Zhao HW. Wang H. Wei JB. Shi ZJ. Angew. Chem. Int. Ed. 2015; 54: 13686
    • 5c Wang Z. Ni JZ. Kuninobu Y. Kanai M. Angew. Chem. Int. Ed. 2014; 53: 3496
    • 5d Shibata T. Matsuo Y. Adv. Synth. Catal. 2014; 356: 1516
    • 5e Dastbaravardeh N. Kirchner K. Schnurch M. Mihovilovic MD. J. Org. Chem. 2013; 78: 658
    • 6a Rothman KJ. Michels KB. N. Engl. J. Med. 1994; 331: 394
    • 6b Grissmer S. Nguyen AN. Aiyar J. Hanson DC. Mather RJ. Gutman GA. Karmilowicz MJ. Auperin DD. Chandy KG. Mol. Pharmacol. 1994; 45: 1227
    • 6c Echt DS. Liebson R. Mitchell LB. Peters RW. Obiasmanno D. Barker AH. Arensberg D. Baker A. Friedman L. Greene HL. Huther ML. Richardson DW. N. Engl. J. Med. 1991; 324: 781
    • 6d Marty M. Pouillart P. Scholl S. Droz JP. Azab M. Brion N. Pujadelauraine E. Paule B. Paes D. Bons J. N. Engl. J. Med. 1990; 322: 816
    • 7a Chen F.-J. Zhao S. Hu F. Chen K. Zhang Q. Zhang S.-Q. Shi B.-F. Chem. Sci. 2013; 4: 4187
    • 7b Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457
    • 7c Li S. Zhu W. Gao F. Li C. Wang J. Liu H. J. Org. Chem. 2017; 82: 126
    • 7d Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 7e Shi WJ. Shi ZJ. Chin. J. Chem. 2014; 32: 974
    • 7f Shan G. Yang X. Zong Y. Rao Y. Angew. Chem. Int. Ed. 2013; 52: 13606
    • 7g Kamal A. Srinivasulu V. Sathish M. Tangella Y. Nayak VL. Rao MP. N. Shankaraiah N. Nagesh N. Asian J. Org. Chem. 2014; 3: 68
    • 7h Enthaler S. Company A. Chem. Soc. Rev. 2011; 40: 4912
    • 8a Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 8b Daugulis O. Do HQ. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 8c Ishikawa K. Aoki K. J. Jpn. Inst. Met. 2007; 71: 845
    • 8d Gamez P. Aubel PG. Driessen WL. Reedijk J. Chem. Soc. Rev. 2001; 30: 376
    • 9a Thomas AM. Sujatha A. Anilkumar G. RSC Adv. 2014; 4: 21688
    • 9b Modak A. Mondal J. Bhaumik A. Green Chem. 2012; 14: 2840
    • 9c Zhang QH. Deng WP. Wang Y. Chem. Commun. 2011; 9275
    • 9d Zhang M. Appl. Organomet. Chem. 2010; 24: 269
    • 10a Lu WK. Xu H. Shen ZM. Org. Biomol. Chem. 2017; 15: 1261
    • 10b Yu MW. Wang ZQ. Hu JB. Li SL. Du HG. J. Org. Chem. 2015; 80: 9446
    • 10c Yin X.-S. Li Y.-C. Yuan J. Gu W.-J. Shi B.-F. Org. Chem. Front. 2015; 2: 119
    • 10d Takemura N. Kuninobu Y. Kanai M. Org. Lett. 2013; 15: 844
    • 11a Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
    • 11b Wang Z.-L. Zhao L. Wang M.-X. Org. Lett. 2012; 14: 1472
    • 11c Wang Z.-L. Zhao L. Wang M.-X. Org. Lett. 2011; 13: 6560
    • 11d King AE. Huffman LM. Casitas A. Costas M. Ribas X. Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 11e Hufman LM. Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
  • 12 General Procedure for Cu(II)-Catalyzed Alkoxylation: Cu2(OH)2CO3 (0.04 mmol), KOCN (0.40 mmol), methenamine (0.04 mmol), 4-bromo-N-(2-(dimethylamino)ethyl)benzamide (0.20 mmol), CH3OH (2 mL) were introduced into a 15 mL sealed tube equipped with a magnetic stirrer in O2. The mixture was vigorously stirred at 120 °C for 24 h. After cooling to room temperature, the solvent was evaporated under vacuum. The residue was dissolved in mixed solvent of dichloromethane (30 mL) and edetate tetrasodium (EDTA) saturated aqueous solution (30 mL). After separation, the aqueous phase was extracted twice with dichloromethane (15 mL) and the organic layers were combined and evaporated under vacuum. The crude product was purified by column chromatography using silica gel to afford 4-bromo-N-(2-(dimethylamino)ethyl)-2-methoxybenzamide. Isolated yield: 0.0542 g (90%). 1H NMR (500 MHz, CDCl3): δ = 8.33 (s, 1 H), 8.01 (d, J = 8.4 Hz, 1 H), 6.97 (dd, J = 8.4, 1.8 Hz, 1 H), 6.89 (d, J = 1.8 Hz, 1 H), 3.92 (s, 3 H), 3.66 (q, J = 5.9 Hz, 2 H), 2.87–2.80 (m, 2 H), 2.50 (s, 6 H). 13C NMR (126 MHz, CHCl3): δ = 164.84, 158.08, 138.54, 133.11, 121.34, 119.82, 112.04, 57.77, 56.29, 44.68, 36.56. HRMS (ESI): m/z [M]+ calcd for C12H18ClN2O2: 257.1051; found: 257.1062.