Synlett 2018; 29(14): 1801-1806
DOI: 10.1055/s-0037-1610141
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Intermolecular Hydroacylation of Alkenes with Aldehydes through Rhodium Catalysis

Rui Guo
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: guozhuzhang@sioc.ac.cn
,
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: guozhuzhang@sioc.ac.cn
› Author Affiliations
We are grateful to NSFC-21421091, 21772218 XDB20000000, the ‘Thousand Plan’ Youth Program, the State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, and the Chinese Academy of Sciences.
Further Information

Publication History

Received: 10 March 2018

Accepted after revision: 11 April 2018

Publication Date:
23 May 2018 (online)

Abstract

The rhodium-catalyzed intermolecular hydroacylation of alkenes with aldehydes is an atom-economical method for the synthesis of ketones. Here, we give a brief review on its development and we highlight recent advances in chelating strategies for the stabilization of acyl rhodium species by coordinative saturation.

 
  • References


    • For reviews, see:
    • 1a Park J.-W. Kou KG. M. Kim DK. Dong VM. Chem. Sci. 2015; 6: 4479
    • 1b Willis MC. Chem. Rev. 2010; 110: 725
    • 1c Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 1d Fu GC. In Modern Rhodium Catalyzed Organic Reactions . Evans PA. Wiley-VCH; New York: 2005. Chap. 4 79 ; and references therein
    • 2a Yang L. Huang H. Chem. Rev. 2015; 115: 3468
    • 2b Jun C.-H. Jo E.-A. Park J.-W. Eur. J. Org. Chem. 2007; 1869
  • 3 Sakai K. Ide J. Oda O. Nakamura N. Tetrahedron Lett. 1972; 13: 1287
    • 4a Crépin D. Dawick J. Aïssa C. Angew. Chem. Int. Ed. 2010; 49: 620
    • 4b Aïssa C. Fürstner A. J. Am. Chem. Soc. 2007; 129: 14836
    • 4c Aloise AD. Layton ME. Shair MD. J. Am. Chem. Soc. 2000; 122: 12610
    • 4d Sato Y. Oonishi Y. Mori M. Angew. Chem. Int. Ed. 2002; 41: 1218
    • 4e Barnhart RW. Wang X. Noheda P. Bergens SH. Whelan J. Bosnich B. J. Am. Chem. Soc. 1994; 116: 1821
    • 4f Wu X.-M. Funakoshi K. Sakai K. Tetra­hedron Lett. 1992; 33: 6331
    • 4g James BR. Young CG. J. Chem. Soc., Chem. Commun. 1983; 1215
    • 4h Lochow CF. Miller RG. J. Am. Chem. Soc. 1976; 98: 1281
    • 4i Milstein D. Organo­metallics 1982; 1: 1549
    • 5a Campbell RE. Jr. Lochow CF. Vora KP. Miller RG. J. Am. Chem. Soc. 1980; 102: 5824
    • 5b Campbell RE. Jr. Miller RG. J. Organomet. Chem. 1980; 186: c27
    • 5c Marder TB. Roe DC. Milstein D. Organometallics 1988; 7: 1451
  • 6 Suggs JW. J. Am. Chem. Soc. 1978; 100: 640
    • 7a Lee H. Jun C.-H. Bull. Korean Chem. Soc. 1995; 16: 66
    • 7b Lee H. Jun C.-H. Bull. Korean Chem. Soc. 1995; 16: 1135
  • 8 Suggs JW. J. Am. Chem. Soc. 1979; 101: 489
    • 9a Jun C.-H. Lee H. Hong J.-B. J. Org. Chem. 1997; 62: 1200
    • 9b Jun C.-H. Lee D.-Y. Lee H. Hong J.-B. Angew. Chem. Int. Ed. 2000; 39: 3070
    • 9c Jo E.-A. Jun C.-H. Eur. J. Org. Chem. 2006; 2504
    • 9d Jo E.-A. Jun C.-H. Tetrahedron Lett. 2009; 50: 3338
    • 10a Jun C.-H. Hong J.-B. Kim Y.-H. Chung K.-Y. Angew. Chem. Int. Ed. 2000; 39: 3440
    • 10b Jun C.-H. Moon CW. Lim S.-G. Lee H. Org. Lett. 2002; 4: 1595
    • 10c Lee D.-Y. Kim I.-J. Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
  • 11 Vautravers NR. Regent DD. Breit B. Chem. Commun. 2011; 47: 6635
    • 12a Kokobu K. Matsumasa K. Miura M. Nomura M. J. Org. Chem. 1997; 62: 4564
    • 12b Kokobu K. Matsumasa K. Nishinaka Y. Miura M. Nomura M. Bull. Chem. Soc. Jpn. 1999; 72: 303
    • 13a von Delius M. Le CM. Dong VM. J. Am. Chem. Soc. 2012; 134: 15022
    • 13b Phan DH. T. Kou KG. M. Dong VM. J. Am. Chem. Soc. 2010; 132: 16354
    • 13c Coulter MM. Dornan PK. Dong VM. J. Am. Chem. Soc. 2009; 131: 6932
    • 13d Stemmler RT. Bolm C. Adv. Synth. Catal. 2007; 349: 1185
    • 13e Tanaka K. Tanaka M. Suemune H. Tetrahedron Lett. 2005; 46: 6053
    • 14a Coxon TJ. Fernández M. Barwick-Silk J. McKay AI. Britton LE. Weller AS. Willis MC. J. Am. Chem. Soc. 2017; 139: 10142
    • 14b Prades A. Fernández M. Pike SD. Willis MC. Weller AS. Angew. Chem. Int. Ed. 2015; 54: 8520
    • 14c Chaplin AB. Hooper JF. Weller AS. Willis MC. J. Am. Chem. Soc. 2012; 134: 4885
    • 14d Willis MC. McNally SJ. Beswick PJ. Angew. Chem. Int. Ed. 2004; 43: 340
    • 15a Moxham GL. Randell-Sly HE. Brayshaw SK. Woodward RL. Weller AS. Willis MC. Angew. Chem. Int. Ed. 2006; 45: 7618
    • 15b Moxham GL. Randell-Sly HE. Brayshaw SK. Weller AS. Willis MC. Chem. Eur. J. 2008; 14: 8383
    • 15c Osborne JD. Willis MC. Chem. Commun. 2008; 5025
  • 16 Tanaka K. Shibata Y. Suda T. Hagiwara Y. Hirano M. Org. Lett. 2007; 9: 1215
  • 17 Shibata Y. Tanaka K. J. Am. Chem. Soc. 2009; 131: 12552
  • 18 Coulter MM. Kou KG. M. Galligan B. Dong VM. J. Am. Chem. Soc. 2010; 132: 16330
    • 19a Murphy SK. Petrone DA. Coulter MM. Dong VM. Org. Lett. 2011; 13: 6216
    • 19b Murphy SK. Coulter MM. Dong VM. Chem. Sci. 2012; 3: 355
    • 20a Murphy SK. Bruch A. Dong VM. Angew. Chem. Int. Ed. 2014; 53: 2455
    • 20b Murphy SK. Bruch A. Dong VM. Chem. Sci. 2015; 6: 174

      For reviews, see:
    • 21a Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
    • 21b Marek I. Masarwa A. Delaye P.-O. Leibeling M. Angew. Chem., Int. Ed. 2015; 54: 414
    • 21c Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 21d Dermenci A. Coe JW. Dong G. Org. Chem. Front. 2014; 1: 567
    • 21e Flores-Gaspar A. Martin R. Synthesis 2013; 45: 563
    • 21f Murakami M. Ito Y. Top. Organomet. Chem. 1999; 3: 97
    • 21g C–C Bond Activation . Dong G. Springer; Berlin: 2014

      For selected examples, see:
    • 22a Guo R. Zheng X. Zhang D. Zhang G. Chem. Sci. 2017; 8: 3002
    • 22b Zhao H. Fan X. Yu J. Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
    • 22c Ishida N. Shimamoto Y. Yano T. Murakami M. J. Am. Chem. Soc. 2013; 135: 19103
    • 22d Ishida N. Sawano S. Masuda Y. Murakami M. J. Am. Chem. Soc. 2012; 134: 17502
    • 22e Seiser T. Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 22f Álvarez-Bercedo P. Flores-Gaspar A. Correa A. Martin R. J. Am. Chem. Soc. 2010; 132: 466
    • 22g Matsumura S. Maeda Y. Nishimura T. Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
  • 23 Guo R. Zhang G. J. Am. Chem. Soc. 2017; 139: 12891