Synlett 2018; 29(12): 1593-1596
DOI: 10.1055/s-0037-1610159
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Zeolitic Imidazolate–Zinc Metal–Organic Framework and the Combination of its Catalytic Properties with 2,2,2-Trifluoroethanol for N-Formylation

Hassan Alamgholiloo
a   Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran   Email: rostamnia.sadegh@nims.go.jp   Email: srostamnia@gmail.com   Email: rostamnia@maragheh.ac.ir
,
a   Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran   Email: rostamnia.sadegh@nims.go.jp   Email: srostamnia@gmail.com   Email: rostamnia@maragheh.ac.ir
,
Asadollah Hassankhani*
b   Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran   Email: hassankhani_a@yahoo.com
,
Reza Banaei
a   Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran   Email: rostamnia.sadegh@nims.go.jp   Email: srostamnia@gmail.com   Email: rostamnia@maragheh.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 11 January 2018

Accepted after revision: 25 April 2018

Publication Date:
30 May 2018 (online)


Abstract

A novel protocol is reported for the N-formylation of amines with formic acid by using the nanoporous zeolitic imidazolate framework ZIF-8 as a heterogeneous catalyst in 2,2,2-trifluoroethanol.

Supporting Information

 
  • References and Notes

    • 1a Ghose AK. Viswanadhan VN. Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 1b Yang Q. Xu Q. Jiang H.-L. Chem. Soc. Rev. 2017; 46: 4774
    • 1c Wang C. Liu D. Lin W. J. Am. Chem. Soc. 2013; 135: 13222
    • 1d Hu M.-L. Safarifard V. Doustkhah E. Rostamnia S. Morsali A. Nouruzi N. Beheshti S. Akhbari K. Microporous Mesoporous Mater. 2018; 256: 111
  • 2 Augustine RL. O’Leary ST. J. Mol. Catal. A: Chem. 1995; 95: 277
  • 3 Cremer E. Adv. Catal. 1955; 7: 75
  • 4 Chen B. Yang Z. Zhu Y. Xia Y. J. Mater. Chem. A 2014; 2: 16811
    • 5a Park KS. Ni Z. Côté AP. Choi JY. Huang R. Uribe-Romo FJ. Chae HK. O’Keeffe M. Yaghi OM. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 10186
    • 5b Wu H. Zhou W. Yildirim T. J. Am. Chem. Soc. 2007; 129: 5314
  • 6 Chokbunpiam T. Chanajaree R. Remsungnen T. Saengsawang O. Fritzsche S. Chmelik C. Caro J. Janke W. Hannongbua S. Microporous Mesoporous Mater. 2014; 187: 1
  • 7 Dang TT. Zhu Y. Ngiam JS. Ghosh SC. Chen A. Seayad AM. ACS Catal. 2013; 3: 1406
  • 8 Miao Z. Yang F. Luan Y. Shu X. Ramella D. J. Solid State Chem. 2017; 256: 27
  • 9 Zahmakiran M. Dalton Trans. 2012; 41: 12690
  • 10 Blicke F. Lu C.-J. J. Am. Chem. Soc. 1952; 74: 3933
  • 11 Chen FM. Benoiton NL. Synthesis 1979; 709
  • 12 Reddy PG. Kumar GK. Baskaran S. Tetrahedron Lett. 2000; 41: 9149
  • 13 Strazzolini P. Giumanini AG. Cauci S. Tetrahedron 1990; 46: 1081
  • 14 Hill DR. Hsiao C.-N. Kurukulasuriya R. Wittenberger SJ. Org. Lett. 2002; 4: 111
    • 15a Djuric SW. J. Org. Chem. 1984; 49: 1311
    • 15b Pettit G. Kalnins M. Liu T. Thomas E. Parent K. J. Org. Chem. 1961; 26: 2563
  • 16 Olah G. Kuhn S. J. Am. Chem. Soc. 1960; 82: 2380
  • 17 Soleymanifard B. Heravi MM. Shiri M. Zolfigol MA. Rafiee M. Kruger HG. Naicker T. Rasekhmanesh F. Tetrahedron Lett. 2012; 53: 3546
  • 18 Pasqua AE. Matheson M. Sewell AL. Marquez R. Org. Process Res. Dev. 2011; 15: 467
  • 19 Dong B. Wang L. Zhao S. Ge R. Song X. Wang Y. Gao Y. Chem. Commun. 2016; 52: 7082
  • 20 Hoang LT. Ngo LH. Nguyen HL. Nguyen HT. Nguyen CK. Nguyen BT. Ton QT. Nguyen HK. Cordova KE. Truong T. Chem. Commun. 2015; 51: 17132
  • 21 Rostamnia S. Karimi Z. Inorg. Chim. Acta 2015; 428: 133
  • 22 Rostamnia S. Nouruzi N. Xin H. Luque R. Catal. Sci. Technol. 2015; 5: 199
    • 23a Eberson L. Hartshorn MP. Persson O. Radner F. Chem. Commun. 1996; 2105
    • 23b Eberson L. Hartshorn MP. Persson O. J. Chem. Soc., Perkin Trans. 2 1995; 1735
  • 24 Bégué J.-P. Bonnet-Delpon D. Crousse B. Synlett 2004; 2004: 18
  • 25 Povey JF. Smales CM. Hassard SJ. Howard MJ. J. Struct. Biol. 2007; 157: 329
  • 26 Khaksar S. Heydari A. Tajbakhsh M. Vahdat SM. J. Fluorine Chem. 2010; 131: 1377
    • 27a Rostamnia S. Doustkhah E. Tetrahedron Lett. 2014; 55: 2508
    • 27b Rostamnia S. Zabardasti A. J. Fluorine Chem. 2012; 144: 69
  • 28 Rostamnia S. Doustkhah E. Synlett 2015; 26: 1345
  • 29 Rostamnia S. Doustkhah E. Nuri A. J. Fluorine Chem. 2013; 153: 1
  • 30 N-Formylation: General Procedure The appropriate amine (1 mmol), HCO2H (3 mmol), and ZIF-8 (5 mg, 3 mol%) were added to TFE (3 mL), and the mixture was stirred at 40 °C for the appropriate time (Table 2). When the reaction was complete (TLC), the catalyst was recovered by centrifugation, and the TFE was recovered by distillation (bp 78 °C). The resulting mixture was then purified by column chromatography (silica gel) to provide the desired product. The structures of all products were confirmed by 1H and 13C NMR spectroscopy (see Supporting Information). N-Phenylformamide (3a) White solid; yield: 120 mg (>99%); mp 45 °C. 1H NMR (300 MHz, CDCl3): δ = 7.28 (m, 3 H, CH of Ar), 7.57 (d, 3 J HH = 8.4 Hz, 2 H), 8.33 (s, 1 H, H of CHO), 9.15 (br s, 1 H, NH). N,N-Diphenylacetamide (3f)White solid; yield: 196 mg (93%); mp 101 °C. 1H NMR (300 MHz, CDCl3): δ = 2.09 (s, 3 H, CH3), 6.96–7.37 (m, 10 H, CH of Ar).
    • 31a Venna SR. Jasinski JB. Carreon MA. J. Am. Chem. Soc. 2010; 132: 18030
    • 31b Procházková D. Bejblová M. Vlk J. Vinu A. Štěpnička P. Čejka J. Chem. Eur. J. 2010; 16: 7773
    • 32a Moggach SA. Bennett TD. Cheetham AK. Angew. Chem. 2009; 121: 7221
    • 32b Fairen-Jimenez D. Moggach S. Wharmby M. Wright P. Parsons S. Düren T. J. Am. Chem. Soc. 2011; 133: 8900