Synlett 2018; 29(17): 2213-2217
DOI: 10.1055/s-0037-1610160
synpacts
© Georg Thieme Verlag Stuttgart · New York

Cationic Bismuth Compounds in Organic Synthesis and Catalysis: New Prospects for CH Activation

Benedikt Ritschel
Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: crispin.lichtenberg@uni-wuerzburg.de
,
Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: crispin.lichtenberg@uni-wuerzburg.de
› Author Affiliations
Generous financial support by the Fonds der Chemischen Industrie is gratefully acknowledged (Liebig fellowship to C. L.).

Further Information

Publication History

Received: 13 April 2018

Accepted after revision: 02 May 2018

Publication Date:
29 May 2018 (online)

Abstract

Well-defined cationic bismuth complexes, [Bi(NR2)Ln]+, based on simple, monodentate, monoanionic amide ligands have recently been reported (R = Me, iPr, etc.). The unusual reactivity patterns of these species are highlighted, with a focus on a recently reported double CH activation reaction. Mechanistic aspects and the impact of charge on reactivity are discussed. These results are compared with literature-known strategies in bismuth-mediated CH activations, and their potential implications for future research in the field are outlined.

1 Introduction

2 Bismuth-Mediated CH Activation

3 Cationic Bismuth Complexes

4 Cationic Bismuth Amides for CH Activation

5 Conclusion

 
  • References and Notes

    • 1a Labinger JA. Bercaw JE. Nature 2002; 417: 507
    • 1b Godula K. Sames D. Science 2006; 312: 67
    • 2a Giri R. Shi B.-F. Engle KM. Maugel N. Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 2b Balcells D. Clot E. Eisenstein O. Chem. Rev. 2010; 110: 749
    • 3a Power PP. Nature 2010; 463: 171
    • 3b Lichtenberg C. Angew. Chem. Int. Ed. 2016; 55: 484
    • 4a Hashiguchi BG. Konnick MM. Bischof SM. Gustafson SJ. Devarajan D. Gunsalus N. Ess DH. Periana RA. Science 2014; 343: 1232
    • 4b Konnick MM. Hasiguchi BG. Devarajan D. Boaz NC. Gunnoe TB. Groves JT. Gunsalus N. Ess DH. Periana RA. Angew. Chem. Int. Ed. 2014; 53: 10490
    • 4c Ménard G. Stephan DW. Angew. Chem. Int. Ed. 2012; 51: 4409
    • 5a Limberg C. Angew. Chem. Int. Ed. 2003; 42: 5932
    • 5b Hanna TA. Coord. Chem. Rev. 2004; 248: 429
    • 6a Roggan S. Limberg C. Ziemer B. Brandt M. Angew. Chem. Int. Ed. 2004; 43: 2846
    • 6b Roggan S. Schnakenburg G. Limberg C. Sandhöfner S. Pritzkow H. Ziemer B. Chem. Eur. J. 2005; 11: 225
    • 6c Schiwon R. Knispel C. Limberg C. Organometallics 2010; 29: 1670
    • 6d Knispel C. Limberg C. Organometallics 2011; 30: 3701
    • 6e Knispel C. Limberg C. Tschersich C. Chem. Commun. 2011; 47: 10794
  • 7 Casely IJ. Ziller JW. Fang M. Furche F. Evans WJ. J. Am. Chem. Soc. 2011; 133: 5244
  • 8 Also see: Kou X. Wang X. Mendoza-Espinosa D. Zakharov LN. Rheingold AL. Watson WH. Brien KA. Jayarathna LK. Hanna TA. Inorg. Chem. 2009; 48: 11002
  • 9 For an example of a Bi-mediated CH activation reaction with C–C (rather than Bi–C) bond formation, see: Hering-Junghans C. Schulz A. Thomas M. Villinger A. Dalton Trans. 2016; 45: 6053
    • 10a Urgin K. Aubé C. Pipelier M. Blot V. Thobie-Gautier C. Sengmany S. Lebreton J. Léonel E. Dubreuil D. Condon S. Eur. J. Org. Chem. 2013; 117
    • 10b Matsumura M. Yamada M. Tsuji T. Murata Y. Kakusawa N. Yasuike S. J. Organomet. Chem. 2015; 794: 70
    • 10c Rao ML. N. Shimada S. Yamazaki O. Tanaka M. J. Organomet. Chem. 2002; 659: 117
    • 10d Cassirame B. Condon S. Pichon C. J. Mol. Catal. A: Chem. 2016; 425: 94
  • 11 Gagnon A. Dansereau J. Le Roch A. Synthesis 2017; 49: 1707
    • 12a Lin T.-P. Ke I.-S. Gabbaï F. Angew. Chem. Int. Ed. 2012; 51: 4985
    • 12b Tschersich C. Limberg C. Roggan S. Herwig C. Ernsting N. Kovalenko S. Mebs S. Angew. Chem. Int. Ed. 2012; 51: 4989
    • 12c Tschersich C. Hoof S. Frank N. Herwig C. Limberg C. Inorg. Chem. 2016; 55: 1837
    • 12d Kannan R. Kumar S. Andrews AP. Jemmis ED. Venugopal A. Inorg. Chem. 2017; 56: 9391
  • 13 For tuning the Lewis acidity of bismuth complexes by modifying the ligand bite angle see ref. 12d.
  • 14 Tan N. Yin S. Li Y. Qiu Y. Qiu R. Meng Z. Song X. Luo S. Au CT. Wong W.-Y. J. Organomet. Chem. 2011; 696: 1579
  • 15 Qiu R. Qiu Y. Yin S. Song X. Meng Z. Xu X. Zhang X. Luo S. Au C.-T. Wong W.-Y. Green Chem. 2010; 12: 1767
    • 16a Qiu R. Yin S. Zhang X. Xia J. Xu X. Luo S. Chem. Commun. 2009; 4759
    • 16b Qiu R. Yin S. Song X. Meng Z. Qiu Y. Tan N. Xu X. Luo S. Dai F.-R. Au C.-T. Wong W.-Y. Dalton Trans. 2011; 40: 9482
    • 17a Ollevier T. Org. Biomol. Chem. 2013; 11: 2740
    • 17b Bothwell JM. Krabbe SW. Mohan RS. Chem. Soc. Rev. 2011; 40: 4649
    • 17c Hua R. Curr. Org. Synth. 2008; 5: 1
    • 17d Ollevier T. Bismuth-Mediated Organic Reactions. In Topics in Current Chemistry. Vol. 311 Springer; Heidelberg: 2012
  • 18 Qin H. Yamagiwa N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc. 2006; 128: 1611
  • 19 Bao M. Hayashi T. Shimada S. Organometallics 2007; 26: 1816
    • 20a Lichtenberg C. Pan F. Spaniol TP. Englert U. Okuda J. Angew. Chem. Int. Ed. 2012; 51: 13011
    • 20b Lichtenberg C. Okuda J. Angew. Chem. Int. Ed. 2013; 52: 5228
  • 21 Dengel H. Lichtenberg C. Chem. Eur. J. 2016; 22: 18465
  • 22 A dinuclear complex is formed in the case of R = Me, L = thf, n = 3, [WCA] = [B(3,5-C6H3(CF3)2)4].
    • 23a Veith M. Bertsch B. Huch V. Z. Anorg. Allg. Chem. 1988; 559: 73
    • 23b Schwamm RJ. Day BM. Coles MP. Fitchett CM. Inorg. Chem. 2014; 53: 3778
    • 23c Hering-Junghans C. Thomas M. Villinger A. Schulz A. Chem. Eur. J. 2015; 21: 6713
    • 23d Schwamm RJ. Coles MP. Fitchett CM. Dalton Trans. 2017; 46: 4066
  • 24 Ritschel B. Poater J. Dengel H. Bickelhaupt FM. Lichtenberg C. Angew. Chem. Int. Ed. 2018; 57: 3825
  • 25 The reaction shown in Scheme 4 is also suggested to proceed as a classical deprotonation reaction (cf. ref. 24).
  • 26 Radical mechanisms have been suggested in a few cases, but these mechanisms have not been studied in detail (e.g., ref. 7).
    • 27a Davies RP. Raithby PR. Snaith R. Angew. Chem., Int. Ed. Engl. 1997; 36: 1215
    • 27b Waggoner KM. Olmstead MM. Power PP. Polyhedron 1990; 9: 257
    • 27c Yamamoto K. Shibata Y. Kashiwa Y. Kondo A. Tsurugi H. Mashima K. Eur. J. Inorg. Chem. 2013; 3821
    • 27d Niemeyer M. Goodwin TJ. Risbud SH. Power PP. Chem. Mater. 1996; 8: 2745
    • 27e Stewart CA. Dickie DA. Moasser B. Kemp RA. Polyhedron 2012; 32: 14
    • 27f Tayebani M. Gambarotta S. Yap G. Organometallics 1998; 17: 3639
    • 28a Shannon RD. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976; 32: 751
    • 28b Pyykkö P. Atsumi M. Chem. Eur. J. 2009; 15: 186
  • 29 The degree of hybridization of s and p valence orbitals decreases with increasing atomic number, i.e., there is only a very low degree of hydrdidization between bismuth-centered 6s and 6p orbitals, for example: Suzuki H. Kamoatsu N. Ogawa T. Murafuji T. Ikegami T. Matano Y. Organobismuth Chemistry . 1st ed. Elsevier; Amsterdam: 2001
    • 30a Freedman LD. Doak GO. Chem. Rev. 1982; 82: 15
    • 30b Also see ref. 9.

      See, for example:
    • 31a Cheng G. Wang P. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 8183
    • 31b He J. Li S. Deng Y. Fu H. Laforteza BN. Spangler JE. Homs A. Yu J.-Q. Science 2014; 343: 1216
    • 31c Zhang S.-Y. Li Q. He G. Nack WA. Chen G. J. Am. Chem. Soc. 2013; 135: 12135