Synlett 2018; 29(20): 2595-2600
DOI: 10.1055/s-0037-1610266
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in σ-Bond Cross-Exchange Reactions to Access Diverse Silacycles

Wen-Tao Zhao
,
Fang Gao
,
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. of China   Email: dongbing.chem@nankai.edu.cn
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (21602115), 1000-Talent Youth Program (020/BF180181), the Natural Science Foundation of Tianjin (18JCYBJC20400), the Fundamental Research Funds for the Central Universities and Nankai University.
Further Information

Publication History

Received: 15 June 2018

Accepted after revision: 10 August 2018

Publication Date:
30 August 2018 (online)

Abstract

The σ-bond cross-exchange reaction, which involves cleavage and subsequent exchange between different nonpolar σ-bonds, constitutes an attractive protocol for rapid access to organic skeletons with 100% atom economy. Herein, we give a brief summary of recent achievements in this approach for the synthesis of diverse silacycles, highlighting our recent advances in the first intermolecular σ-bond exchange between C–C bonds of cyclopropenones and C–Si bonds of (benzo)silacyclobutanes.

1 Introduction

2 σ-Bond Exchange-Reaction of Benzocyclobutanones to Silacycles

3 σ-Bond Exchange-Reaction of Ethyl Cyclopropylideneacetates to Silacycles

4 σ-Bond Exchange-Reaction of Cyclopropenones to Silacycles

5 Conclusion

 
  • References

    • 1a Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
    • 1b Tobisu M. Chatani N. Chem. Soc. Rev. 2008; 37: 300
    • 1c Bonesi SM. Fagnoni M. Chem. Eur. J. 2010; 16: 13572
    • 1d Mack DJ. Njardarson JT. ACS Catal. 2013; 3: 272
    • 1e Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 1f Liu H. Feng M. Jiang X. Chem. Asian J. 2014; 9: 3360
    • 1g Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
    • 1h Murakami M. Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
    • 1i Shaw MH. Bower JF. Chem. Commun. 2016; 10817
    • 1j Chen P.-H. Billett BA. Tsukamoto T. Dong G. ACS Catal. 2017; 7: 1340
    • 1k Fumagalli G. Stanton S. Bower JF. Chem. Rev. 2017; 117: 9404
    • 1l Hirano K. Yorimitsu H. Oshima K. Chem. Commun. 2008; 3234
    • 1m Zhang Q.-W. An K. He W. Synlett 2015; 26: 1145
    • 1n Li L. Zhang Y. Gao L. Song Z. Tetrahedron Lett. 2015; 56: 1466
    • 1o Komiyama T. Minami Y. Hiyama T. ACS Catal. 2017; 7: 631
    • 2a Edelbach BL. Lachicotte RJ. Jones WD. Organometallics 1999; 18: 4660
    • 2b Matsuda T. Kirikae H. Organometallics 2011; 30: 3923
    • 2c Chatani N. Takeyasu T. Hanafusa T. Tetrahedron Lett. 1988; 29: 3979
    • 2d Pohlmann T. de Meijere A. Org. Lett. 2000; 2: 3877
    • 2e Suginome M. Matsuda T. Ito Y. J. Am. Chem. Soc. 2000; 122: 11015
    • 2f Cheng Z.-L. Xiao J.-C. Liu C. Chen Q.-Y. Eur. J. Org. Chem. 2006; 5581
    • 3a Bains W. Tacke R. Curr. Opin. Drug Discovery Dev. 2003; 6: 526
    • 3b Showell GA. Mills JS. Drug Discovery Today 2003; 8: 551
    • 3c Englebienne P. Hoonacker AV. Herst C. Drug Design Rev. 2005; 2: 467
    • 3d Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 3e Franz AK. Wilson SO. J. Med. Chem. 2013; 56: 388
    • 3f Min GK. Hernández D. Skrydstrup T. Acc. Chem. Res. 2013; 46: 457
    • 4a Hissler M. Dyer PW. Réau R. Coord. Chem. Rev. 2003; 244: 1
    • 4b Yamaguchi S. Tamao K. Chem. Lett. 2005; 34: 2
    • 4c Shimizu M. Hiyama T. Synlett 2012; 23: 973
    • 4d He X. Baumgartner T. RSC Adv. 2013; 3: 11334
    • 4e Parke SM. Boone MP. Rivard E. Chem. Commun. 2016; 9485
    • 5a Franz AK. Woerpel KA. Acc. Chem. Res. 2000; 33: 813
    • 5b Hirano K. Yorimitsu H. Oshima K. Chem. Commun. 2008; 3234
    • 5c Bracegirdle S. Anderson EA. Chem. Soc. Rev. 2010; 39: 4114
    • 5d Parasram M. Gevorgyan V. Acc. Chem. Res. 2017; 50: 2038
  • 6 Ishida N. Ikemoto W. Murakami M. Org. Lett. 2012; 14: 3230
  • 7 Ishida N. Ikemoto W. Murakami M. J. Am. Chem. Soc. 2014; 136: 5912
  • 8 Okumura S. Sun F. Ishida N. Murakami M. J. Am. Chem. Soc. 2017; 139: 12414
  • 9 Saito S. Yoshizawa T. Ishigami S. Yamasaki R. Tetrahedron Lett. 2010; 51: 6028
    • 10a Kondo T. Kaneko Y. Taguchi Y. Nakamura A. Okada T. Shiotsuki M. Ura Y. Wada K. Mitsudo T. J. Am. Chem. Soc. 2002; 124: 6824
    • 10b Wender PA. Paxton TJ. Williams TJ. J. Am. Chem. Soc. 2006; 128: 14814
    • 10c Yu S. Li X. Org. Lett. 2014; 16: 1220
    • 10d Xie F. Yu S. Qi Z. Li X. Angew. Chem. Int. Ed. 2016; 55: 15351
    • 10e Kong L. Zhou X. Xu Y. Li X. Org. Lett. 2017; 19: 3644
  • 11 Zhao W.-T. Gao F. Zhao D. Angew. Chem. Int. Ed. 2018; 57: 6329
  • 12 Aborways MM. Moran WJ. J. Organomet. Chem. 2015; 797: 57