Synlett 2019; 30(01): 12-20
DOI: 10.1055/s-0037-1610313
synpacts
© Georg Thieme Verlag Stuttgart · New York

Manganese-Catalyzed Direct Olefination via an Acceptorless Dehydrogenative Coupling of Methyl Heteroarenes with Primary Alcohols

Milan K. Barman
,
Satyadeep Waiba
,
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, WB, India   Email: bm@iiserkol.ac.in
› Author Affiliations
This work supported by IISER Kolkata (Start-up grant) and SERB (ECR/2016/001654).
Further Information

Publication History

Received: 13 September 2018

Accepted after revision: 12 October 2018

Publication Date:
14 November 2018 (online)

Abstract

Synthesis of olefins utilizing different catalytic strategies is an emerging topic in organic chemistry. However, despite of tremendous progress in the field the direct olefination of C(sp3)–H bonds using primary alcohols via an acceptorless dehydrogenative coupling (ADC) is not developed. Such an ADC reaction is highly environmentally benign as it produces dihydrogen and water as the sole byproducts. The liberated dihydrogen can potentially be used as an energy source. In this Synpact article, we present the recent development of ADC reaction as a tool to make unsaturated molecules and a summary of our recently developed synthetic procedure for the preparation of olefins employing an ADC reaction of methyl heteroarenes with alcohols. The catalyst development using an earth’s abundant metal manganese and the scope of such reaction is discussed.

1 Introduction

2 The Acceptorless Dehydrogenative Coupling as a Tool to Make Unsaturated Molecules

3 Transition-Metal-Catalyzed Coupling of Alcohols with Methyl-Substituted Heteroarenes

4 Development of the Manganese Catalyst for the Olefination of Methyl-Substituted Heteroarenes

5 Scope and Limitation of the Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes

6 Mechanistic Studies and Proposed Mechanism

7 Conclusion

 
  • References

    • 1a Bullock RM. Catalysis without Precious Metals. Wiley-VCH; Weinheim: 2010
    • 1b Sherry BD, Fuerstner A. Acc. Chem. Res. 2008; 41: 1500
    • 1c Bullock RM. Science 2013; 342: 1054
    • 1d Bauer I, Knoelker H.-J. Chem. Rev. 2015; 115: 3170
    • 1e Chakraborty S, Bhattacharya P, Dai H, Guan H. Acc. Chem. Res. 2015; 48: 1995
    • 1f Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 1g Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 1h Renaud J.-L, Gaillard S. Synthesis 2016; 48: 3659
    • 2a Carney JR, Dillon BR, Thomas SP. Eur. J. Org. Chem. 2016; 3912
    • 2b Liu W, Ackermann L. ACS Catal. 2016; 6: 3743
    • 2c Valyaev DA, Lavigne G, Lugan N. Coord. Chem. Rev. 2016; 308: 191
    • 2d Garbe M, Junge K, Beller M. Eur. J. Org. Chem. 2017; 4344
    • 2e Maji B, Barman MK. Synthesis 2017; 49: 3377
    • 2f Trovitch RJ. Acc. Chem. Res. 2017; 50: 2842
    • 2g Trovitch RJ. Acc. Chem. Res. 2017; 50: 2842
    • 2h Bao L, Peng P, Lu X. Acc. Chem. Res. 2018; 51: 810
    • 2i Cano R, Mackey K, McGlacken GP. Catal. Sci. Technol. 2018; 8: 1251
    • 2j Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
    • 2k Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
    • 2l Gorgas N, Kirchner K. Acc. Chem. Res. 2018; 51: 1558
    • 2m Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
    • 2n Stanbury M, Compain J.-D, Chardon-Noblat S. Coord. Chem. Rev. 2018; 361: 120
    • 2o Yang X, Wang C. Chem. Asian J. 2018; 13: 2307
    • 3a Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. J. Am. Chem. Soc. 2016; 138: 8809
    • 3b Kallmeier F, Irrgang T, Dietel T, Kempe R. Angew. Chem. Int. Ed. 2016; 55: 11806
    • 3c Bruneau-Voisine A, Wang D, Roisnel T, Darcel C, Sortais J.-B. Catal. Commun. 2017; 92: 1
    • 3d Chakraborty S, Gellrich U, Diskin-Posner Y, Leitus G, Avram L, Milstein D. Angew. Chem. Int. Ed. 2017; 56: 4229
    • 3e Dubey A, Nencini L, Fayzullin RR, Nervi C, Khusnutdinova JR. ACS Catal. 2017; 7: 3864
    • 3f Espinosa-Jalapa NA, Nerush A, Shimon LJ. W, Leitus G, Avram L, Ben-David Y, Milstein D. Chem. Eur. J. 2017; 23: 5934
    • 3g Kar S, Goeppert A, Kothandaraman J, Prakash GK. S. ACS Catal. 2017; 7: 6347
    • 3h Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem. Sci. 2017; 8: 3576
    • 3i Rawat KS, Pathak B. Catal. Sci. Technol. 2017; 7: 3234
    • 3j van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, Junge K, Hensen EJ. M, Beller M, Lefort L, Pidko EA. Angew. Chem. Int. Ed. 2017; 56: 7531
    • 3k Widegren MB, Harkness GJ, Slawin AM. Z, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
    • 3l Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K. ACS Catal. 2018; 8: 4009
    • 3m Kaithal A, Hölscher M, Leitner W. Angew. Chem. Int. Ed. 2018; 57: 13449
    • 3n Li H, Wei D, Bruneau-Voisine A, Ducamp M, Henrion M, Roisnel T, Dorcet V, Darcel C, Carpentier J.-F, Soulé J.-F, Sortais J.-B. Organometallics 2018; 37: 1271
    • 3o Wei D, Bruneau-Voisine A, Chauvin T, Dorcet V, Roisnel T, Valyaev DA, Lugan N, Sortais J.-B. Adv. Synth. Catal. 2018; 360: 676
    • 3p Wei D, Bruneau-Voisine A, Valyaev DA, Lugan N, Sortais J.-B. Chem. Commun. 2018; 54: 4302
    • 3q Widegren MB, Clarke ML. Org. Lett. 2018; 20: 2654
    • 3r Zou Y.-Q, Chakraborty S, Nerush A, Oren D, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018; 8: 8014
    • 3s Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 13439
    • 4a Bauer JO, Chakraborty S, Milstein D. ACS Catal. 2017; 7: 4462
    • 4b Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais J.-B. J. Catal. 2017; 347: 57
    • 4c Espinosa-Jalapa NA, Kumar A, Leitus G, Diskin-Posner Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11722
    • 4d Kumar A, Espinosa-Jalapa NA, Leitus G, Diskin-Posner Y, Avram L, Milstein D. Angew. Chem. Int. Ed. 2017; 56: 14992
    • 4e Mastalir M, Pittenauer E, Allmaier G, Kirchner K. J. Am. Chem. Soc. 2017; 139: 8812
    • 4f Nguyen DH, Trivelli X, Capet F, Paul J.-F, Dumeignil F, Gauvin RM. ACS Catal. 2017; 7: 2022
    • 4g Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
    • 4h Mondal A, Subaramanian M, Nandakumar A, Balaraman E. Org. Lett. 2018; 20: 3381
    • 4i Shao Z, Wang Y, Liu Y, Wang Q, Fu X, Liu Q. Org. Chem. Front. 2018; 5: 1248
    • 5a Elangovan S, Neumann J, Sortais J.-B, Junge K, Darcel C, Beller M. Nat. Commun. 2016; 7: 12641
    • 5b Mastalir M, Glatz M, Gorgas N, Stoeger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Chem. Eur. J. 2016; 22: 12316
    • 5c Fu S, Shao Z, Wang Y, Liu Q. J. Am. Chem. Soc. 2017; 139: 11941
    • 5d Das UK, Ben-David Y, Diskin-Posner Y, Milstein D. Angew. Chem. Int. Ed. 2018; 57: 2179
    • 5e Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. ACS Catal. 2018; 8: 8525
    • 5f Kulkarni NV, Brennessel WW, Jones WD. ACS Catal. 2018; 8: 997
    • 6a Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
    • 6b Deibl N, Kempe R. Angew. Chem. Int. Ed. 2017; 56: 1663
  • 7 Matar S, Hatch LF. Chemistry of Petrochemical Processes 2001
    • 8a Simoni D, Roberti M, Invidiata FP, Aiello E, Aiello S, Marchetti P, Baruchello R, Eleopra M, Di Cristina A, Grimaudo S, Gebbia N, Crosta L, Dieli F, Tolomeo M. Bioorg. Med. Chem. Lett. 2006; 16: 3245
    • 8b Jung J.-C, Lim E, Lee Y, Kang J.-M, Kim H, Jang S, Oh S, Jung M. Eur. J. Med. Chem. 2009; 44: 3166
    • 8c Hagiwara K, Kosaka N, Yoshioka Y, Takahashi R.-u, Takeshita F, Ochiya T. Sci. Rep. 2012; 2: 314
    • 8d Dai J, Liu Z.-Q, Wang X.-Q, Lin J, Yao P.-F, Huang S.-L, Ou T.-M, Tan J.-H, Li D, Gu L.-Q, Huang Z.-S. J. Med. Chem. 2015; 58: 3875
    • 9a Karlsson J, Emgard M, Brundin P, Burkitt MJ. J. Neurochem. 2000; 75: 141
    • 9b Larrosa M, Tomas-Barberan FA, Espin JC. J. Agric. Food Chem. 2003; 51: 4576
    • 9c Schiffer HH, Reding EC, Fuhs SR, Lu Q, Piu F, Wong S, Littler P.-LH, Weiner DM, Keefe W, Tan PK, Nash NR, Knapp AE, Olsson R, Brann MR. Mol. Pharmacol. 2007; 71: 508
  • 10 Lipkowitz MA, Navarra T. The Encyclopedia of Allergies 2001; 178
    • 11a Li Q, Lee J.-S, Ha C, Park CB, Yang G, Gan WB, Chang Y.-T. Angew. Chem. Int. Ed. 2004; 43: 6331
    • 11b Li Q, Min J, Ahn Y.-H, Namm J, Kim EM, Lui R, Kim HY, Ji Y, Wu H, Winsniewski T, Chang Y.-T. ChemBioChem 2007; 8: 1679
    • 11c Kang N.-Y, Ha H.-H, Yun S.-W, Yu YH, Chang Y.-T. Chem. Soc. Rev. 2011; 40: 3613
  • 12 Wang S, Chang Y.-T. Chem. Commun. 2008; 1173
    • 13a Kraft A, Grimsdale AC, Holmes AB. Angew. Chem. Int. Ed. 1998; 37: 402
    • 13b Nohra B, Graule S, Lescop C, Reau R. J. Am. Chem. Soc. 2006; 128: 3520
    • 13c Wang L.-Y, Chen Q.-W, Zhai G.-H, Wen Z.-Y, Zhang Z.-X. Dyes Pigm. 2006; 72: 357
    • 14a Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
    • 14b Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
  • 15 Julia M, Paris JM. Tetrahedron Lett. 1973; 4833
    • 16a Peterson DJ. J. Org. Chem. 1968; 33: 780
    • 16b van Staden LF, Gravestock D, Ager DJ. Chem. Soc. Rev. 2002; 31: 195
  • 17 Tebbe FN, Parshall GW, Reddy GS. J. Am. Chem. Soc. 1978; 100: 3611
    • 18a Lebel H, Paquet V, Proulx C. Angew. Chem. Int. Ed. 2001; 40: 2887
    • 18b Lebel H, Paquet V. J. Am. Chem. Soc. 2004; 126: 11152
    • 18c Lebel H, Ladjel C, Brethous L. J. Am. Chem. Soc. 2007; 129: 13321
    • 18d Lebel H, Ladjel C. Organometallics 2008; 27: 2676
    • 18e Alonso F, Riente P, Yus M. Eur. J. Org. Chem. 2009; 6034
    • 18f Davi M, Lebel H. Org. Lett. 2009; 11: 41
    • 18g Lee EY, Kim Y, Lee JS, Park J. Eur. J. Org. Chem. 2009; 2943
    • 19a Heck RF, Nolley JP. Jr. J. Org. Chem. 1972; 37: 2320
    • 19b Ferre-Filmon K, Delaude L, Demonceau A, Noels AF. Coord. Chem. Rev. 2004; 248: 2323
  • 21 Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao D.-H, Wei F.-L, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
    • 22a Ireland RE, Norbeck DW. J. Org. Chem. 1985; 50: 2198
    • 22b Barrett AG. M, Hamprecht D, Ohkubo M. J. Org. Chem. 1997; 62: 9376
    • 22c Blackburn L, Kanno H, Taylor RJ. K. Tetrahedron Lett. 2003; 44: 115
    • 22d MacCoss RN, Balskus EP, Ley SV. Tetrahedron Lett. 2003; 44: 7779
    • 22e Bressette AR, Glover LC. IV. Synlett 2004; 738
    • 22f Pinacho Crisóstomo FR, Carrillo R, Martín T, García-Tellado F, Martín VS. J. Org. Chem. 2005; 70: 10099
    • 22g Taylor RJ. K, Reid M, Foot J, Raw SA. Acc. Chem. Res. 2005; 38: 851
    • 22h Vatèle J.-M. Tetrahedron Lett. 2006; 47: 715
    • 23a Gunanathan C, Milstein D. Science 2013; 341
    • 23b Crabtree RH. Chem. Rev. 2017; 117: 9228
  • 24 Barta K, Ford PC. Acc. Chem. Res. 2014; 47: 1503
    • 25a Evans DJ, Pickett CJ. Chem. Soc. Rev. 2003; 32: 268
    • 25b Whittaker JW. Arch. Biochem. Biophys. 2005; 433: 227
  • 26 Gnanaprakasam B, Zhang J, Milstein D. Angew. Chem. Int. Ed. 2010; 49: 1468
    • 27a Benito-Garagorri D, Kirchner K. Acc. Chem. Res. 2008; 41: 201
    • 27b Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
    • 27c Selander N, Szabó KJ. Chem. Rev. 2011; 111: 2048
    • 27d Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
    • 28a Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
    • 28b Daw P, Chakraborty S, Garg JA, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2016; 55: 14373
    • 28c Kallmeier F, Dudziec B, Irrgang T, Kempe R. Angew. Chem. Int. Ed. 2017; 56: 7261
    • 29a Khaskin E, Milstein D. Chem. Commun. 2015; 51: 9002
    • 29b Dutta I, Sarbajna A, Pandey P, Rahaman SM. W, Singh K, Bera JK. Organometallics 2016; 35: 1505
    • 30a Srimani D, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 11092
    • 30b Siddiki SM. A. H, Touchy AS, Kon K, Shimizu K.-i. Chem. Eur. J. 2016; 22: 6111
  • 31 Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
  • 32 Barman MK, Waiba S, Maji B. Angew. Chem. Int. Ed. 2018; 57: 9126
  • 33 Zhang G, Irrgang T, Dietel T, Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 9131
  • 34 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
  • 35 Blank B, Kempe R. J. Am. Chem. Soc. 2010; 132: 924
  • 36 Obora Y, Ogawa S, Yamamoto N. J. Org. Chem. 2012; 77: 9429
  • 37 Feng T.-Y, Li H.-X, Young DJ, Lang J.-P. J. Org. Chem. 2017; 82: 4113
  • 38 Chaudhari C, Hakim Siddiki SM. A, Shimizu K.-i. Tetrahedron Lett. 2013; 54: 6490
    • 39a Togni A, Venanzi LM. Angew. Chem., Int. Ed. Engl. 1994; 33: 497
    • 39b Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science 2013; 342: 1076
    • 39c Perez M, Elangovan S, Spannenberg A, Junge K, Beller M. ChemSusChem 2017; 10: 83
    • 39d Wang D, Bruneau-Voisine A, Sortais J.-B. Catal. Commun. 2018; 105: 31
  • 40 Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais J.-B. Org. Lett. 2017; 19: 3656