Synlett 2019; 30(03): 245-251
DOI: 10.1055/s-0037-1610336
synpacts
© Georg Thieme Verlag Stuttgart · New York

Modern Annulation Strategies for the Synthesis of Cyclo[b]fused Indoles

Edgar Haak*
Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: Edgar.Haak@ovgu.de
› Author Affiliations
This work was supported by the German Research Foundation DFG (265182801).
Further Information

Publication History

Received: 24 August 2018

Accepted after revision: 05 November 2018

Publication Date:
13 December 2018 (online)

Abstract

2,3-Annulated indoles exhibit a broad spectrum of biological activities. Various annulation strategies are applied to generate these scaffolds from prefunctionalized aniline or indole derivatives. Only a few methodologies allow the direct annulation of indole itself, often associated with regioselectivity issues or restrictions on available substitution patterns. More recently, ruthenium-catalyzed cascade transformations of readily available propargyl alcohols have been applied to the selective synthesis of various cyclo[b]fused indoles directly from indole. These efficient processes provide rapid access to intricate molecular structures from simple starting materials and facilitate the preparation of drug-like molecules.

 
  • References

    • 1a Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
    • 1b Xu W, Gavia DJ, Tang Y. Nat. Prod. Rep. 2014; 31: 1474
    • 1c Olgen S. Mini-Rev. Med. Chem. 2013; 13: 1700
    • 1d Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 1e Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2013; 30: 694
    • 1f Marcos IS, Moro RF, Costales I, Basabe P, Díez D. Nat. Prod. Rep. 2013; 30: 1509
    • 1g Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1h Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491
    • 1i Bandini M, Eichholzer A. Angew. Chem. 2009; 121: 9786
    • 1j Higuchi K, Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 1k Brancale A, Silvestri R. Med. Res. Rev. 2007; 27: 209
    • 1l Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1m Angeli M, Bandini M, Garelli A, Piccinelli F, Tommasi S, Umani-Ronchi A. Org. Biomol. Chem. 2006; 4: 3291
    • 1n Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 1o Kawasaki T, Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1p Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 1q Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 1r Somei M, Yamada F. Nat. Prod. Rep. 2003; 20: 216
    • 2a Vivekanand T, Satpathi B, Bankar SK, Ramasastry SS. V. RSC Adv. 2018; 8: 18576
    • 2b Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 2c Stempel E, Gaich T. Acc. Chem. Res. 2016; 49: 2390
    • 2d Gataullin RR. Russ. J. Org. Chem. 2016; 52: 1227
    • 3a Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
    • 3b Borsche W, Witte A, Bothe W. Liebigs Ann. Chem. 1908; 359
    • 3c Robinson B. Chem. Rev. 1969; 69: 227
    • 3d Haag BA, Zhang ZG, Li JS, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 9513
    • 3e Inman M, Moody CJ. Chem. Commun. 2011; 47: 788
    • 3f Reddy AG. K, Satyanarayana G. Synthesis 2015; 47: 1269
    • 3g Humne VT, Naykode MS, Ghom MH, Lokhande PD. Tetrahedron Lett. 2016; 57: 688
    • 3h Gribble GW. In Indole Ring Synthesis: From Natural Products to Drug Discovery . John Wiley & Sons; Chichester: 2016. 1st Ed. 41
    • 4a Wang Z, Xu X, Gu Z, Feng W, Qian H, Li Z, Suna X, Kwon O. Chem. Commun. 2016; 52: 2811
    • 4b Manisha, Dhiman S, Mathew J, Ramasastry SS. V. Org. Biomol. Chem. 2016; 14: 5563
    • 4c Dhiman S, Ramasastry SS. V. Org. Lett. 2015; 17: 5116
    • 4d Yagoubi M, Cruz AC. F, Nichols PL, Elliott RL, Willis MC. Angew. Chem. Int. Ed. 2010; 49: 7958
    • 4e Malona JA, Colbourne JM, Frontier AJ. Org. Lett. 2006; 8: 5661
    • 4f Xu B, Guo Z.-L, Jin W.-Y, Wang Z.-P, Peng Y.-G, Guo Q.-X. Angew. Chem. 2012; 124: 1083
    • 4g Santos MS, Fernandes DC, Rodrigues MT, Regiani T, Andricopulo AD, Ruiz AL. T. G, Vendramini-Costa DB, de Carvalho JE, Eberlin MN, Coelho F. J. Org. Chem. 2016; 81: 6626
    • 4h Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
    • 4i Harrison C.-A, Leineweber R, Moody CJ, Williams JM. Tetrahedron Lett. 1993; 34: 8527
    • 4j Katritzky AR, Zhang G, Xie L, Ghiviriga I. J. Org. Chem. 1996; 61: 7558
    • 4k Li H, Hughes RP, Wu J. J. Am. Chem. Soc. 2014; 136: 6288
    • 4l Prasad B, Sreenivas BY, Krishna GR, Kapavarapuc R, Pal M. Chem. Commun. 2013; 49: 6716
    • 5a Song W, Li X, Yang K, Zhao X.-L, Glazier DA, Xi B.-M, Tang W. J. Org. Chem. 2016; 81: 2930
    • 5b Witulski B, Alayrac C. Angew. Chem. Int. Ed. 2002; 41: 3281
    • 5c Knölker H.-J, Bauermeister M, Pannek J.-B. Chem. Ber. 1992; 125: 2783
    • 5d Krahl MP, Jäger A, Krause T, Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
    • 5e Åkermark B, Eberson L, Jonsson E, Pettersson E. J. Org. Chem. 1975; 40: 1365
    • 5f Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
    • 5g Kano S, Sugino E, Shibuya S, Hibino S. J. Org. Chem. 1981; 46: 3856
    • 5h Choshi T, Sada T, Fujimoto H, Nagayama C, Sugino E, Hibino S. J. Org. Chem. 1997; 62: 2535
    • 5i Kotha S, Aswar VR, Chinnam AK. Tetrahedron Lett. 2017; 58: 4360
    • 5j Gu Y, Huang W, Chen S, Wang X. Org. Lett. 2018; 20: 4285
    • 5k Wang H, Wang Z, Wang Y.-L, Zhou R.-R, Wu G.-C, Yin S.-Y, Yan X, Wang B. Org. Lett. 2017; 19: 6140
    • 5l Verma AK, Danodia AK, Saunthwal RK, Patel M, Choudhary D. Org. Lett. 2015; 17: 3658
    • 5m Saunthwal RK, Patel M, Kumar S, Danodia AK, Verma AK. Chem. Eur. J. 2015; 21: 18601
    • 5n Ozaki K, Zhang H, Ito H, Lei A, Itami K. Chem. Sci. 2013; 4: 3416
    • 5o Laha JK, Dayal N. Org. Lett. 2015; 17: 4742
    • 5p Shi L, Zhong X, She H, Lei Z, Li F. Chem. Commun. 2015; 51: 7136
    • 5q Yamashita M, Horiguchi H, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 7481
    • 5r Wang T.-T, Zhao L, Zhang Y.-J, Liao W.-W. Org. Lett. 2016; 18: 5002
    • 5s Gao M, Yang M, Chen H, Zhou B. Adv. Synth. Catal. 2018; 360: 100
    • 6a Zhang J, Shao J, Xue J, Wang Y, Li Y. RSC Adv. 2014; 4: 63850
    • 6b Shu D, Song W, Li X, Tang W. Angew. Chem. 2013; 125: 3319
    • 6c Han X, Li H, Hughes RP, Wu J. Angew. Chem. 2012; 124: 10536
    • 6d Xu G, Chen L, Sun J. Org. Lett. 2018; 20: 3408
    • 6e Li Y, Zhu C.-Z, Zhang J. Eur. J. Org. Chem. 2017; 6609
    • 6f Mei G, Yuan H, Gu Y, Chen W, Chung LW, Li C.-C. Angew. Chem. 2014; 126: 11231
    • 6g Silvanus AC, Heffernan SJ, Liptrot DJ, Kociok-Köhn G, Andrews BI, Carbery DR. Org. Lett. 2009; 11: 1175
    • 7a Kaufmann J, Jäckel E, Haak E. Angew. Chem. 2018; 130: 6010
    • 7b Jäckel E, Kaufmann J, Haak E. Synthesis 2018; 50: 742
    • 7c Thies N, Stürminger M, Haak E. Synlett 2017; 28: 701
    • 7d Thies N, Haak E. Angew. Chem. 2015; 127: 4170
    • 7e Thies N, Gerlach M, Haak E. Eur. J. Org. Chem. 2013; 7354
    • 7f Jonek A, Berger S, Haak E. Chem. Eur. J. 2012; 18: 15504
    • 7g Thies N, Hrib CG, Haak E. Chem. Eur. J. 2012; 18: 6302
  • 8 Karwehl S, Jansen R, Huch V, Stadler M. J. Nat. Prod. 2016; 79: 369