CC BY 4.0 · Rev Bras Ginecol Obstet 2019; 41(04): 256-263
DOI: 10.1055/s-0039-1683904
Review Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Hormonal Biomarkers for Evaluating the Impact of Fetal Growth Restriction on the Development of Chronic Adult Disease

Biomarcadores hormonais para avaliar o impacto da restrição do crescimento fetal no desenvolvimento de doenças crônicas em adultos
Elizabeth Soares da Silva Magalhães
1   Clinical Research Unit, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
,
1   Clinical Research Unit, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
,
Maria Elisabeth Lopes Moreira
1   Clinical Research Unit, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
› Author Affiliations
Further Information

Publication History

08 November 2018

02 February 2019

Publication Date:
02 April 2019 (online)

Abstract

The hypothesis of fetal origins to adult diseases proposes that metabolic chronic disorders, including cardiovascular diseases, diabetes, and hypertension originate in the developmental plasticity due to intrauterine insults. These processes involve an adaptative response by the fetus to changes in the environmental signals, which can promote the reset of hormones and of the metabolism to establish a “thrifty phenotype”. Metabolic alterations during intrauterine growth restriction can modify the fetal programming. The present nonsystematic review intended to summarize historical and current references that indicated that developmental origins of health and disease (DOHaD) occur as a consequence of altered maternal and fetal metabolic pathways. The purpose is to highlight the potential implications of growth factors and adipokines in “developmental programming”, which could interfere in the development by controlling fetal growth patterns. These changes affect the structure and the functional capacity of various organs, including the brain, the kidneys, and the pancreas. These investigations may improve the approach to optimizing antenatal as well as perinatal care aimed to protect newborns against long-term chronic diseases.

Resumo

A hipótese das origens fetais de doenças em adultos propõe que distúrbios crônicos metabólicos, incluindo doenças cardiovasculares, diabetes e hipertensão, se originam na plasticidade do desenvolvimento devido a insultos intrauterinos. Estes processos envolvem uma resposta adaptativa do feto a mudanças nos sinais ambientais que podem promover a redefinição dos hormônios e do metabolismo para estabelecer um “fenótipo poupador”. Alterações metabólicas durante a restrição de crescimento intrauterino podem modificar a programação fetal. A presente revisão não-sistemática pretendeu resumir referências históricas e atuais que indicassem que as origens desenvolvimentistas da saúde e doença (DOHaD, na sigla em inglês) ocorrem como consequência de alterações nas vias metabólicas materna e fetal. O propósito é destacar as potenciais implicações de fatores de crescimento e adipocinas na “programação do desenvolvimento”, que poderia interferir no desenvolvimento, controlando os padrões de crescimento fetal. Estas alterações afetam a estrutura e a capacidade funcional de inúmeros órgãos, incluindo o cérebro, os rins e o pâncreas. Estas investigações podem melhorar a abordagem para otimizar os cuidados pré-natais e perinatais, com o objetivo de proteger os recém-nascidos contra doenças crônicas em longo prazo.

 
  • References

  • 1 Nardozza LM, Caetano AC, Zamarian AC. , et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet 2017; 295 (05) 1061-1077 . Doi: 10.1007/s00404-017-4341-9
  • 2 Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2 (8663): 577-580 . Doi: 10.1016/S0140-6736(89)90710-1
  • 3 Miles HL, Hofman PL, Cutfield WS. Fetal origins of adult disease: a paediatric perspective. Rev Endocr Metab Disord 2005; 6 (04) 261-268 . Doi: 10.1007/s11154-005-6184-0
  • 4 Wang KC, Botting KJ, Padhee M. , et al. Early origins of heart disease: low birth weight and the role of the insulin-like growth factor system in cardiac hypertrophy. Clin Exp Pharmacol Physiol 2012; 39 (11) 958-964 . Doi: 10.1111/j.1440-1681.2012.05743.x
  • 5 Thorn SR, Rozance PJ, Brown LD, Hay Jr WW. The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 2011; 29 (03) 225-236 . Doi: 10.1055/s-0031-1275516
  • 6 Galjaard S, Devlieger R, Van Assche FA. Fetal growth and developmental programming. J Perinat Med 2013; 41 (01) 101-105 . Doi: 10.1515/jpm-2012-0020
  • 7 Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992. Int J Epidemiol 2013; 42 (05) 1215-1222 . Doi: 10.1093/ije/dyt133
  • 8 Barker DJ, Thornburg KL. The obstetric origins of health for a lifetime. Clin Obstet Gynecol 2013; 56 (03) 511-519 . Doi: 10.1097/GRF.0b013e31829cb9ca
  • 9 Sehgal A, Skilton MR, Crispi F. Human fetal growth restriction: a cardiovascular journey through to adolescence. J Dev Orig Health Dis 2016; 7 (06) 626-635 . Doi: 10.1017/S2040174416000337
  • 10 Cheong JN, Wlodek ME, Moritz KM, Cuffe JS. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 2016; 594 (17) 4727-4740 . Doi: 10.1113/JP271745
  • 11 Barker DJ. Human growth and chronic disease: a memorial to Jim Tanner. Ann Hum Biol 2012; 39 (05) 335-341 . Doi: 10.3109/03014460.2012.712717
  • 12 Kermack AJ, Van Rijn BB, Houghton FD, Calder PC, Cameron IT, Macklon NS. The ‘Developmental Origins’ Hypothesis: relevance to the obstetrician and gynecologist. J Dev Orig Health Dis 2015; 6 (05) 415-424 . Doi: 10.1017/S2040174415001324
  • 13 Kajantie E, Osmond C, Barker DJ, Forsén T, Phillips DI, Eriksson JG. Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years. Int J Epidemiol 2005; 34 (03) 655-663 . Doi: 10.1093/ije/dyi048
  • 14 Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976; 295 (07) 349-353 . Doi: 10.1056/NEJM197608122950701
  • 15 Lumey LH, Stein AD, Kahn HS. , et al. Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 2007; 36 (06) 1196-1204 . Doi: 10.1093/ije/dym126
  • 16 Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 2011; 70 (02) 141-145 . Doi: 10.1016/j.maturitas.2011.06.017
  • 17 Kajantie E, Fall CH, Seppälä M. , et al. Serum insulin-like growth factor (IGF)-I and IGF-binding protein-1 in elderly people: relationships with cardiovascular risk factors, body composition, size at birth, and childhood growth. J Clin Endocrinol Metab 2003; 88 (03) 1059-1065 . Doi: 10.1210/jc.2002-021380
  • 18 Kajantie E, Barker DJ, Osmond C, Forsén T, Eriksson JG. Growth before 2 years of age and serum lipids 60 years later: the Helsinki Birth Cohort study. Int J Epidemiol 2008; 37 (02) 280-289 . Doi: 10.1093/ije/dyn012
  • 19 Eriksson JG. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr 2011; 94 (6, Suppl): 1799S-1802S . Doi: 10.3945/ajcn.110.000638
  • 20 Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 1996; 14 (08) 935-941 . Doi: 10.1097/00004872-199608000-00002
  • 21 Ross MG, Beall MH. Adult sequelae of intrauterine growth restriction. Semin Perinatol 2008; 32 (03) 213-218 . Doi: 10.1053/j.semperi.2007.11.005
  • 22 Lumey LH, Stein AD, Kahn HS, Romijn JA. Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter Families Study. Am J Clin Nutr 2009; 89 (06) 1737-1743 . Doi: 10.3945/ajcn.2008.27038
  • 23 World Health Organization. Global Global Health Observatory (GHO) data: NCD Mortality and Morbidity. Geneva: WHO; 2015 http://www.who.int/gho/ncd/mortality_morbidity/en/ . Accessed March 10, 2018
  • 24 McGorrian C, Yusuf S, Islam S. , et al; INTERHEART Investigators. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score. Eur Heart J 2011; 32 (05) 581-589 . Doi: 10.1093/eurheartj/ehq448
  • 25 Danaei G, Singh GM, Paciorek CJ. , et al; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 2013; 127 (14) 1493-1502, 1502e1-8 . Doi: 10.1161/CIRCULATIONAHA.113.001470
  • 26 Norris SA, Osmond C, Gigante D. , et al; COHORTS Group. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care 2012; 35 (01) 72-79 . Doi: 10.2337/dc11-0456
  • 27 Varvarigou AA. Intrauterine growth restriction as a potential risk factor for disease onset in adulthood. J Pediatr Endocrinol Metab 2010; 23 (03) 215-224 . Doi: 10.1515/JPEM.2010.23.3.215
  • 28 Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011; 18 (06) 409-416 . Doi: 10.1097/MED.0b013e32834c800d
  • 29 Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep 2017; 7 (02) 115-122 . Doi: 10.3892/br.2017.930
  • 30 Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol 2014; 35 (04) 558-572 . Doi: 10.1016/j.yfrne.2014.05.007
  • 31 Baumann MU, Schneider H, Malek A. , et al. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One 2014; 9 (08) e106037 . Doi: 10.1371/journal.pone.0106037
  • 32 Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol 2017; 595 (15) 5057-5093 . Doi: 10.1113/JP273330
  • 33 Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev 2015; 13 (02) 499-511
  • 34 Rozance PJ, Hay Jr WW. Describing hypoglycemia--definition or operational threshold?. Early Hum Dev 2010; 86 (05) 275-280 . Doi: 10.1016/j.earlhumdev.2010.05.002
  • 35 Watanabe S, Tamura T, Ono K. , et al. Insulin-like growth factor axis (insulin-like growth factor-I/insulin-like growth factor-binding protein-3) as a prognostic predictor of heart failure: association with adiponectin. Eur J Heart Fail 2010; 12 (11) 1214-1222 . Doi: 10.1093/eurjhf/hfq166
  • 36 Davidson S, Hod M, Merlob P, Shtaif B. Leptin, insulin, insulin-like growth factors and their binding proteins in cord serum: insight into fetal growth and discordancy. Clin Endocrinol (Oxf) 2006; 65 (05) 586-592 . Doi: 10.1111/j.1365-2265.2006.02632.x
  • 37 Pérez-Pérez A, Toro A, Vilariño-García T. , et al. Leptin action in normal and pathological pregnancies. J Cell Mol Med 2018; 22 (02) 716-727 . Doi: 10.1111/jcmm.13369
  • 38 Baker Méio MD, Lopes Moreira ME, Sichieri R, Moura AS. Reduction of IGF-binding protein-3 as a potential marker of intra-uterine growth restriction. J Perinat Med 2009; 37 (06) 689-693 . Doi: 10.1515/JPM.2009.122
  • 39 Yigiter AB, Kavak ZN, Durukan B. , et al. Placental volume and vascularization flow indices by 3D power Doppler US using VOCAL technique and correlation with IGF-1, free beta-hCG, PAPP-A, and uterine artery Doppler at 11-14 weeks of pregnancy. J Perinat Med 2011; 39 (02) 137-141 . Doi: 10.1515/JPM.2010.136
  • 40 Chiesa C, Osborn JF, Haass C. , et al. Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry?. Clin Chem 2008; 54 (03) 550-558 . Doi: 10.1373/clinchem.2007.095299
  • 41 Kaar JL, Brinton JT, Crume T, Hamman RF, Glueck DH, Dabelea D. Leptin levels at birth and infant growth: the EPOCH study. J Dev Orig Health Dis 2014; 5 (03) 214-218 . Doi: 10.1017/S204017441400021X
  • 42 Mathew H, Castracane VD, Mantzoros C. Adipose tissue and reproductive health. Metabolism 2018; 86: 18-32 . Doi: 10.1016/j.metabol.2017.11.006
  • 43 Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol 2009; 587 (Pt 6): 1145-1152 . Doi: 10.1113/jphysiol.2008.167072
  • 44 Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH. Leptin in pregnancy and development: a contributor to adulthood disease?. Am J Physiol Endocrinol Metab 2015; 308 (05) E335-E350 . Doi: 10.1152/ajpendo.00312.2014
  • 45 Hellström A, Ley D, Hansen-Pupp I. , et al. Role of Insulin Like Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants. Am J Perinatol 2016; 33 (11) 1067-1071 . Doi: 10.1055/s-0036-1586109
  • 46 Devaskar SU, Chu A. Intrauterine growth restriction: hungry for an answer. Physiology (Bethesda) 2016; 31 (02) 131-146 . Doi: 10.1152/physiol.00033.2015
  • 47 Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr 2016; 10: 67-83 . Doi: 10.4137/CMPed.S40070
  • 48 Gatford KL, Simmons RA. Prenatal programming of insulin secretion in intrauterine growth restriction. Clin Obstet Gynecol 2013; 56 (03) 520-528 . Doi: 10.1097/GRF.0b013e31829e5b29
  • 49 Dulloo AG. Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance. Best Pract Res Clin Endocrinol Metab 2008; 22 (01) 155-171 . Doi: 10.1016/j.beem.2007.08.001
  • 50 Schreuder MF, Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int 2007; 72 (03) 265-268 . Doi: 10.1038/sj.ki.5002307
  • 51 Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev 2014; 35 (02) 234-281 . Doi: 10.1210/er.2013-1071
  • 52 Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 2000; 58 (02) 770-773 . Doi: 10.1046/j.1523-1755.2000.00225.x
  • 53 Marroquí L, Gonzalez A, Ñeco P. , et al. Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 2012; 49 (01) R9-R17 . Doi: 10.1530/JME-12-0025
  • 54 Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9 (01) 25-53 . Doi: 10.2174/1573399811309010025
  • 55 Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594 (04) 807-823 . Doi: 10.1113/JP271402
  • 56 Schlotz W, Phillips DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun 2009; 23 (07) 905-916 . Doi: 10.1016/j.bbi.2009.02.001
  • 57 Arcangeli T, Thilaganathan B, Hooper R, Khan KS, Bhide A. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol 2012; 40 (03) 267-275 . Doi: 10.1002/uog.11112
  • 58 Seoane-Collazo P, Fernø J, Gonzalez F. , et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015; 50 (02) 276-291 . Doi: 10.1007/s12020-015-0658-y
  • 59 Pandit R, Beerens S, Adan RAH. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Regul Integr Comp Physiol 2017; 312 (06) R938-R947 . Doi: 10.1152/ajpregu.00045.2016
  • 60 Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64 (01) 24-34 . Doi: 10.1016/j.metabol.2014.08.004
  • 61 Valleau JC, Sullivan EL. The impact of leptin on perinatal development and psychopathology. J Chem Neuroanat 2014; 61-62: 221-232 . Doi: 10.1016/j.jchemneu.2014.05.001
  • 62 Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016; 325: 89-99 . Doi: 10.1016/j.neuroscience.2016.03.056
  • 63 Claris O, Beltrand J, Levy-Marchal C. Consequences of intrauterine growth and early neonatal catch-up growth. Semin Perinatol 2010; 34 (03) 207-210 . Doi: 10.1053/j.semperi.2010.02.005
  • 64 Gohlke BC, Schreiner F, Fimmers R, Bartmann P, Woelfle J. Insulin-like growth factor-I in cord blood is predictive of catch-up growth in monozygotic twins with discordant growth. J Clin Endocrinol Metab 2010; 95 (12) 5375-5381 . Doi: 10.1210/jc.2010-0271
  • 65 Stevens A, Bonshek C, Whatmore A. , et al. Insights into the pathophysiology of catch-up compared with non-catch-up growth in children born small for gestational age: an integrated analysis of metabolic and transcriptomic data. Pharmacogenomics J 2014; 14 (04) 376-384 . Doi: 10.1038/tpj.2014.4
  • 66 Miras M, Ochetti M, Martín S. , et al. Serum levels of adiponectin and leptin in children born small for gestational age: relation to insulin sensitivity parameters. J Pediatr Endocrinol Metab 2010; 23 (05) 463-471 . Doi: 10.1515/jpem.2010.077
  • 67 Giapros VI, Schiza V, Challa AS, Pantou C, Theocharis PD, Andronikou SK. Serum insulin-like growth factor I (IGF-I), IGF-binding proteins-1 and -3, and postnatal growth of late preterm infants. Horm Metab Res 2012; 44 (11) 845-850 . Doi: 10.1055/s-0032-1321759
  • 68 Okada T, Takahashi S, Nagano N, Yoshikawa K, Usukura Y, Hosono S. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: implications of catch-up fat. Pediatr Res 2015; 77 (1-2): 136-142 . Doi: 10.1038/pr.2014.164
  • 69 Sarr O, Yang K, Regnault TR. In utero programming of later adiposity: the role of fetal growth restriction. J Pregnancy 2012; 2012: 134758 . Doi: 10.1155/2012/134758
  • 70 Stawerska R, Szałapska M, Hilczer M, Lewiński A. Ghrelin, insulin-like growth factor I and adipocytokines concentrations in born small for gestational age prepubertal children after the catch-up growth. J Pediatr Endocrinol Metab 2016; 29 (08) 939-945 . Doi: 10.1515/jpem-2015-0463
  • 71 Wells JC, Cole TJ. Height, adiposity and hormonal cardiovascular risk markers in childhood: how to partition the associations?. Int J Obes 2014; 38 (07) 930-935 . Doi: 10.1038/ijo.2014.24
  • 72 Jaquet D, Deghmoun S, Chevenne D, Collin D, Czernichow P, Lévy-Marchal C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia 2005; 48 (05) 849-855 . Doi: 10.1007/s00125-005-1724-4
  • 73 Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab 2012; 97 (12) 4498-4506 . Doi: 10.1210/jc.2012-1716
  • 74 Schneider HJ, Wallaschofski H, Völzke H. , et al. Incremental effects of endocrine and metabolic biomarkers and abdominal obesity on cardiovascular mortality prediction. PLoS One 2012; 7 (03) e33084 . Doi: 10.1371/journal.pone.0033084
  • 75 Singh RR, Denton KM. Role of the kidney in the fetal programming of adult cardiovascular disease: an update. Curr Opin Pharmacol 2015; 21: 53-59 . Doi: 10.1016/j.coph.2014.12.010
  • 76 Yousefzadeh G, Masoomi M, Emadzadeh A, Shahesmaeili A, Sheikhvatan M. The association of insulin-like growth factor-1 with severity of coronary artery disease. J Cardiovasc Med (Hagerstown) 2013; 14 (06) 416-420 . Doi: 10.2459/JCM.0b013e328358c7c7
  • 77 Josefson JL, Zeiss DM, Rademaker AW, Metzger BE. Maternal leptin predicts adiposity of the neonate. Horm Res Paediatr 2014; 81 (01) 13-19 . Doi: 10.1159/000355387
  • 78 Lee PA, Chernausek SD, Hokken-Koelega AC, Czernichow P. ; International Small for Gestational Age Advisory Board. International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24-October 1, 2001. Pediatrics 2003; 111 (6 Pt 1): 1253-1261 . Doi: 10.1542/peds.111.6.1253
  • 79 Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 2014; 16 (07) 419 . Doi: 10.1007/s11883-014-0419-z
  • 80 Beukers F, Cranendonk A, de Vries JI. , et al. Catch-up growth in children born growth restricted to mothers with hypertensive disorders of pregnancy. Arch Dis Child 2013; 98 (01) 30-35 . Doi: 10.1136/archdischild-2012-302510
  • 81 Milsom SR, Blum WF, Gunn AJ. Temporal changes in insulin-like growth factors I and II and in insulin-like growth factor binding proteins 1, 2, and 3 in human milk. Horm Res 2008; 69 (05) 307-311 . Doi: 10.1159/000114863
  • 82 Bronsky J, Mitrova K, Karpisek M. , et al. Adiponectin, AFABP, and leptin in human breast milk during 12 months of lactation. J Pediatr Gastroenterol Nutr 2011; 52 (04) 474-477 . Doi: 10.1097/MPG.0b013e3182062fcc
  • 83 Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother--short- and long-term implications. Best Pract Res Clin Obstet Gynaecol 2015; 29 (02) 256-269 . Doi: 10.1016/j.bpobgyn.2014.08.004
  • 84 von Ehr J, von Versen-Höynck F. Implications of maternal conditions and pregnancy course on offspring's medical problems in adult life. Arch Gynecol Obstet 2016; 294 (04) 673-679 . Doi: 10.1007/s00404-016-4178-7
  • 85 Berglund SK, García-Valdés L, Torres-Espinola FJ. , et al; PREOBE team. Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 2016; 16: 207 . Doi: 10.1186/s12889-016-2809-3
  • 86 Roseboom TJ, Watson ED. The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies. Placenta 2012; 33 (Suppl. 02) e40-e44 . Doi: 10.1016/j.placenta.2012.07.018