Synlett 2020; 31(08): 737-744
DOI: 10.1055/s-0039-1690784
synpacts
© Georg Thieme Verlag Stuttgart · New York

Photo-Biocatalytic Cascades for the Synthesis of Volatile Sulfur Compounds and Chemical Building Blocks

Kate Lauder
,
This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC; iCASE Studentship to K.L.) as well as EPSRC (King’s College London Strategic Fund).
Further Information

Publication History

Received: 23 October 2019

Accepted after revision: 09 December 2019

Publication Date:
10 January 2020 (online)


Abstract

Biocatalysis is a branch of catalysis that exploits enzymes to perform highly stereoselective chemical transformations under mild and sustainable conditions. This Synpact highlights how biocatalysis can be used in the synthesis of chiral 1,3-mercaptoalkanols, an important class of compounds responsible for the flavours and aromas of many foods and beverages. The identification of two ketoreductase (KRED) enzymes able to reduce prochiral ketone precursors enantioselectively to 1,3-mercaptoalkanols bearing a C–O stereocentre is presented. In addition, the combination of a photocatalytic thia-Michael reaction to access prochiral ketones with subsequent KRED-biocatalysed reduction in a one-pot cascade is presented. Photo-biocatalysed cascades represent one of the new and most intriguing challenges in synthetic chemistry, because the combination of different catalytic methodologies in domino processes offers unique opportunities to outperform sequential reactions with a high degree of selectivity and the avoidance of the need to isolate reaction intermediates.

1 Introduction

2 Biocatalytic Synthesis of 1,3-Mercaptoalkanols

3 Photo-Biocatalytic Synthesis of 1,3-Mercaptoalkanols

4 Photo-Biocatalysed Cascade Reactions

5 Conclusions

 
  • References and Notes

  • 1 Werkhoff P, Güntert M, Krammer G, Sommer H, Kaulen J. J. Agric. Food Chem. 1998; 46: 1076
  • 2 McGorrin RJ. In Volatile Sulfur Compounds in Food, ACS Symposium Series, Vol. 1068. Qian MC, Fan X, Mahattanatawee K. American Chemical Society; Washington: 2011. Chap. 1, 3
  • 3 Cannon RJ, Ho C.-T. J. Food Drug Anal. 2018; 26: 445
  • 4 Vermeulen C, Guyot-Declerck C, Collin S. J. Agric. Food Chem. 2003; 51: 3623
    • 5a Engel K.-H, Takeoka G. In Importance of Chirality to Flavor Compounds, ACS Symposium Series, Vol. 1212. Engel K.-H, Takeoka G. American Chemical Society; Washington: 2015
    • 5b Engel K.-H, Tressl R. J. Agric. Food Chem. 1991; 39: 2249
  • 6 Schoenauer S, Polster J, Schieberle P. In Importance of Chirality to Flavor Compounds, ACS Symposium Series, Vol. 1212. Engel K.-H, Takeoka G. American Chemical Society; Washington: 2015. Chap. 10, 135
  • 7 Bentley R. Chem. Rev. 2006; 106: 4099
  • 8 Polster J, Schieberle P. J. Agric. Food Chem. 2017; 65: 4329
  • 9 van de Waal M, Niclass Y, Snowden RL, Bernardinelli G, Escher S. Helv. Chim. Acta 2002; 85: 1246
    • 10a Kaiser B, Hoppe D. Angew. Chem. Int. Ed. 1995; 34: 323
    • 10b Castagnolo D, Foley DJ, Berber H, Luisi R, Clayden J. Org. Lett. 2013; 15: 2116
    • 10c Castagnolo D, Degennaro L, Luisi R, Clayden J. Org. Biomol. Chem. 2015; 13: 2330
    • 10d Mingat G, McDouall JJ. W, Clayden J. Chem. Commun. 2014; 50: 6754
  • 11 Tian X, Cassani C, Liu Y, Moran A, Urakawa A, Galzerano P, Arceo E, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 17934
  • 12 Emori E, Arai T, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1998; 120: 4043
  • 13 Effenberger F, Gaupp S. Tetrahedron: Asymmetry 1999; 10: 1765
  • 14 Nörenberg S, Kiske C, Reichardt B, Andelfinger V, Pfeiffer A, Schmidts F, Eisenreich W, Engel K.-H. J. Agric. Food Chem. 2017; 65: 8913
    • 15a Shiraki H, Nishide K, Node M. Tetrahedron Lett. 2000; 41: 3437
    • 15b Ozeki M, Nishide K, Teraoka F, Node M. Tetrahedron: Asymmetry 2004; 15: 895
  • 16 Tranchier J.-P, Ratovelomanana-Vidal V, Genêt J.-P, Tong S, Cohen T. Tetrahedron Lett. 1997; 38: 2951
    • 17a Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, Lounsbury AW, Mellor KE, Janković NZ, Tu Q, Pincus LN, Falinski MM, Shi W, Coish P, Plata DL, Anastas PT. Green Chem. 2018; 20: 1929
    • 17b Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 17c Sheldon RA. Green Chem. 2017; 19: 18
    • 18a Patel RN. ACS Catal. 2011; 1: 1056
    • 18b Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Nat. Rev. Chem. 2018; 2: 409
    • 18c Sheldon RA, Brady D. ChemSusChem 2019; 12: 2859
    • 19a Hwang K.-J, Lee J, Chin S, Moon CJ, Lee W, Baek C.-S, Kim HJ. Arch. Pharmacal. Res. 2003; 26: 997
    • 19b Wakabayashi H, Wakabayashi M, Eisenreich W, Engel K.-H. J. Agric. Food Chem. 2003; 51: 4349
  • 20 Liu H, Cohen T. J. Org. Chem. 1995; 60: 2022
  • 21 Spiegelhauer O, Dickert F, Mende S, Niks D, Hille R, Ullmann M, Dobbek H. Biochemistry 2009; 48: 11412
  • 22 Biocatalytic Synthesis of Mercaptoalkanols 7; General Procedure A 1.5 mL microcentrifuge tube was charged with a solution of ketone 6 (0.03 mmol) in DMSO (50 μL), 200 mM phosphate buffer (pH 7.0; 650 μL), i-PrOH (50 μL), and NAD(P)H cofactor (0.001 mmol) in buffer (200 μL). (NADH was used with KRED311, and NADPH was used with KRED349.) A solution of the purified KRED stabilised in aq (NH4)2SO4 solution was prepared for use by spinning down a 100 μL suspension at 8000g for 15 s, removing the aq (NH4)2SO4 supernatant, and resuspending the pellet in buffer (50 μL). The resuspended KRED was added to the microcentrifuge tube, and the tube was placed on an environmental shaker at 160 rpm in a temperature-controlled room at 37 °C for 24 h. The mixture was then extracted with EtOAc (3 × 200 μL), dried (MgSO4), and filtered through a 0.2 μM-pore-size filter. The EtOAc was removed in vacuo and the product was redissolved in the appropriate HPLC-grade solvent and injected into the HPLC to determine the percentage conversion and the ee.
  • 23 Photo-Biocatalysed Cascade Synthesis of 1,3-Mercaptoalkanols: General Procedure But-3-en-2-one (0.0455 mmol, 1.0 equiv) and DMSO (50 μL) in 200 mM phosphate buffer (pH 7.0, 700 μL) were added to a vial containing the appropriate thiophenol or mercaptan (0.0455 mmol, 1.0 equiv). Ru(bpy)3Cl2 (0.000137 mmol, 0.3 mol%) was then added, and the mixture was stirred for 1 min. i-PrOH (1.31 mmol, 28.7 equiv) and NAD(P)H (0.00137 mmol, 0.03 equiv) were then added. (NADH was used with KRED311, and NADPH was used with KRED349.) A solution of the purified KRED stabilised in aq (NH4)2SO4 solution was prepared for use by spinning down a suspension at 8000g for 15 s, removing the aq (NH4)2SO4 supernatant, and resuspending the pellet in buffer (50 μL). The resuspended KRED was then added to the reaction mixture, which was shaken on an environmental shaker at 160 rpm in a heated room at 37 °C for 24 h. The mixture was then mixed with EtOAc (2 × 1 mL), and the mixture was spun in a microcentrifuge at 8000g for 1 min to remove traces of the enzyme. The organic layers were collected, dried (MgSO4), and concentrated in vacuo. The crude material was purified by column chromatography [silica gel, EtOAc–hexanes (1:9)] to yield pure mercaptoalkanols 7.
    • 24a Denard CA, Hartwig JF, Zhao H. ACS Catal. 2013; 3: 2856
    • 24b Wang Y, Zhao H. Catalysts 2016; 6: 194
    • 24c Palo-Nieto C, Afewerki S, Anderson M, Tai C.-W, Berglund P, Córdova A. ACS Catal. 2016; 6: 3932
    • 24d Díaz-Rodríguez A, Borzęcka W, Lavanderaand I, Gotor V. ACS Catal. 2014; 4: 386
    • 24e García-Junceda E, Lavandera I, Rother D, Schrittwieser JH. J. Mol. Catal. B: Enzym. 2015; 114: 1
    • 24f Marcos R, Martin-Matute B. Isr. J. Chem. 2012; 52: 639
    • 24g Scalacci N, Black GW, Mattedi G, Brown NL, Turner NJ, Castagnolo D. ACS Catal. 2017; 7: 1295
    • 24h Toscani A, Risi C, Black GW, Brown NL, Shaaban A, Turner NJ, Castagnolo D. ACS Catal. 2018; 8: 8781
    • 24i Risi C, Zhao F, Castagnolo D. ACS Catal. 2019; 9: 7264
    • 25a Visible Light Photocatalysis in Organic Chemistry . Stephenson C, Yoon T, MacMillan DW. C. Wiley–VCH; Weinheim: 2018
    • 25b Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
    • 25c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 26a Wimmer A, König B. Beilstein J. Org. Chem. 2018; 14: 54
    • 26b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 26c Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
    • 26d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 26e Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
  • 27 When methyl vinyl ketone and thiophenol were mixed in 5:95 DMSO/buffer (pH 7), no (or little) formation of mercapto ketone 6a was observed after 1 h.
  • 28 Lauder K, Toscani A, Qi Y, Lim J, Charnock SJ, Korah K, Castagnolo D. Angew. Chem., Int. Ed. Engl. 2018; 57: 5905
    • 29a Turner NJ. Nature 2018; 560: 310
    • 29b Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. ACS Catal. 2019; 9: 4115
    • 29c Seel CJ, Gulder T. ChemBioChem 2019; 20: 1871
  • 30 Litman ZC, Wang Y, Zhao H, Hartwig JF. Nature 2018; 560: 355
  • 31 Guo X, Okamoto Y, Schreier MR, Ward TR, Wenger OS. Chem. Sci. 2018; 9: 5052
  • 32 Yang Q, Zhao F, Zhang N, Liu M, Hu H, Zhang J, Zhou S. Chem. Commun. 2018; 54: 14065
  • 33 Ding X, Dong C.-L, Guan Z, He Y.-H. Angew. Chem. Int. Ed. 2019; 58: 118
  • 34 Zhang W, Fueyo EF, Hollmann F, Martin LL, Pesic M, Wardenga R, Höhne M, Schmidt S. Eur. J. Org. Chem. 2019; 80