CC BY-NC-ND 4.0 · SynOpen 2021; 05(01): 1-16
DOI: 10.1055/s-0040-1706005
paper

Diversity-Oriented Synthesis of Novel Trihalomethyl-Containing Spirochromeno[3,4-a](thia)pyrrolizidines and Spirochromeno-[3,4-a]indolizidines by One-Pot, Three-Component [3+2]-Cyclo­addition Reaction

Igor B. Kutyashev
,
Maxim S. Sannikov
,
Ivan A. Kochnev
,
Alexey Y. Barkov
,
,
,
Vyacheslav Y. Sosnovskikh
The work was financially supported by the Russian Foundation for Basic Research (grant 20-03-00716) and by the Ministry of Science and Higher Education of the Russian Federation (project FEUZ-2020-0052).


Abstract

Regio- and stereoselective methods for the synthesis of 6′-trifluoro(trichloro)methyl substituted spiro[acenaphthylene-1,11′-chromeno[3,4-a](thia)pyrrolizidin]-2-ones and spiro[acenaphthylene-1,12′-chromeno[3,4-a]indolizidin]-2-ones have been developed based on the three-component reaction of 3-nitro-2-trifluoro(trichloro)methyl-2H-chromenes with azomethine ylides generated in situ from acenaphthenequinone and cyclic α-amino acids. The cycloaddition proceeds under mild conditions in ethanol or DMSO, and only endo-isomers of the products with cis-arrangement of nitro and trifluoromethyl groups are formed. The relative configuration of cycloadducts is reliably confirmed by X-ray diffraction analysis and by 2D NOESY spectroscopy.

Supporting Information



Publication History

Received: 13 November 2020

Accepted after revision: 05 December 2020

Publication Date:
04 January 2021 (online)

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schreiber SL. Science 2000; 287: 1964
    • 1b O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444

      For reviews, see:
    • 2a Korotaev VY, Sosnovskikh VY, Barkov AY. Russ. Chem. Rev. 2013; 82: 1081
    • 2b Vroemans R, Dehaen W. In Targets in Heterocyclic Systems, Vol. 22. Attanasi OA, Merino P, Spinelli D. Società Chimica Italiana; Roma: 2018: 318
    • 2c Korotaev VY, Kutyashev IB, Barkov AY, Sosnovskikh VY. Russ. Chem. Rev. 2019; 88: 27

      For selected reviews, see:
    • 3a Costa M, Dias TA, Brito A, Proença F. Eur. J. Med. Chem. 2016; 123: 487
    • 3b Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
    • 3c Goel A, Kumar A, Raghuvanshi A. Chem. Rev. 2013; 113: 1614
    • 4a Ito M, Egashira S.-I, Yoshida K, Mineno T, Kumagai K, Kojima H, Okabe T, Nagano T, Ui M, Matsuoka I. Life Sci. 2017; 180: 137
    • 4b Tian H, Zhang Y, Zhang Q, Li S, Liu Y, Han X. BioSci. Trends 2019; 13: 40
    • 4c Kutyashev IB, Ulitko MV, Zimnitskiy NS, Barkov AY, Korotaev VY, Sosnovskikh VY. New J. Chem. 2019; 43: 18495
    • 4d Cui Y.-M, Ao M.-Z, Li W, Yu L.-J. Planta Med. 2008; 74: 377
  • 5 Korotaev VY, Kutyashev IB, Sosnovskikh VY. Heteroat. Chem. 2005; 16: 492
    • 6a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 6b Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 6c Meyer F. Chem. Commun. 2016; 53: 3077
    • 7a Manetti F, Stecca B, Santini R, Maresca L, Giannini G, Taddei M, Petricci E. ACS Med. Chem. Lett. 2020; 11: 832
    • 7b Raju KR, Prasad AR. G, Kumar BS, Ravindranath LR. K. R. J. Clin. Anal. Med. 2015; 6: 720
    • 7c Amrane D, Gellis A, Hutter S, Prieri M, Verhaeghe P, Azas N, Vanelle P, Primas N. Molecules 2020; 25: 3929
    • 7d Bringmann G, Brückner R, Mössner R, Feineis D, Heils A, Lesch K.-P. Neurochem. Res. 2000; 25: 837

      For reviews, see:
    • 8a Izmest’ev AN, Gazieva GA, Kravchenko AN. Chem. Heterocycl. Compd. 2020; 56: 255
    • 8b Nájera C, Sansano JM. Pure Appl. Chem. 2019; 91: 575
    • 8c Korotaev VY, Zimnitskiy NS, Barkov AY, Kutyashev IB, Sosnovskikh VY. Chem. Heterocycl. Compd. 2018; 54: 905
    • 8d Döndas HA, Retamosa MG, Sansano JM. Synthesis 2017; 49: 2819
    • 8e Arumugam N, Kumar RS, Almansour AI, Perumal S. Curr. Org. Chem. 2013; 17: 1929

      For selected papers, see:
    • 9a Kanchithalaivan S, Sumesh RV, Kumar RR. ACS Comb. Sci. 2014; 16: 566
    • 9b Rao JN. S, Raghunathan R. Tetrahedron Lett. 2015; 56: 1539
    • 9c Haddad S, Boudriga S, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubicki MM, Golz C, Strohmann C. J. Org. Chem. 2015; 80: 9064
    • 9d Kumar RS, Almansour AI, Arumugam N, Altaf M, Menéndez JC, Kumar RR, Osman H. Molecules 2016; 21: 165
    • 9e Zhou Y, Huang Y, Tang G, Li X. Chem. Heterocycl. Compd. 2019; 55: 1044
  • 10 Zhang W, Yi W.-B. Pot, Atom, and Step Economy (PASE) Synthesis . Springer; Cham (Switzerland): 2019
    • 11a Filatov AS, Knyazev NA, Ryazantsev MN, Suslonov VV, Larina AG, Molchanov AP, Kostikov RR, Boitsov VM, Stepakov AV. Org. Chem. Front. 2018; 5: 595
    • 11b Kathirvelan D, Haribabu J, Reddy BS. R, Balachandran C, Duraipandiyan V. Bioorg. Med. Chem. Lett. 2015; 25: 389
    • 11c Akondi AM, Mekala S, Kantam ML, Trivedi R, Chowhan LR, Das A. New J. Chem. 2017; 41: 873
    • 11d Kang T.-H, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H. Eur. J. Pharmacol. 2002; 444: 39
    • 11e Wagner H, Kreutzkamp B, Jurcic K. Planta Med. 1985; 51: 419
    • 11f Sheng Y, Pero RW, Amiri A, Bryngelsson C. Anticancer Res. 1998; 18: 3363
    • 11g Rizzi R, Re F, Bianchi A, De Feo V, De Simone F, Bianchi L, Stivala LA. J. Ethnopharmacol. 1993; 38: 63

      For recent selected examples, see:
    • 12a Chakraborty D, Maity A, Jain CK, Hazra A, Bharitkar YP, Jha T, Majumder HK, Roychoudhury S, Mondal NB. Med. Chem. Commun. 2015; 6: 702
    • 12b Sumesh RV, Muthu M, Almansour AI, Kumar RS, Arumugam N, Athimoolam S, Prabha EA. J. Y, Kumar RR. ACS Comb. Sci. 2016; 18: 262
    • 12c Thimmarayaperumal S, Shanmugam S. New J. Chem. 2018; 42: 4061
    • 12d Kumar RS, Almansour AI, Arumugam N, Periyasami G, Athimoolam S, Kumar RR, Asad M, Asiri AM. Tetrahedron Lett. 2018; 59: 3336
    • 12e Yavari I, Baoosi L, Halvagar MR. Synlett 2018; 29: 635
    • 12f Kumar RS, Antonisamy P, Almansour AI, Arumugam N, Al-thamili DM, Kumar RR, Kim H.-R, Kwon K.-B. Bioorg. Chem. 2019; 91: 103180
    • 13a Kumar RS, Perumal S, Manju SC, Bhatt P, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2009; 19: 3461
    • 13b Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS. Bioorg. Med. Chem. Lett. 2013; 23: 1383
    • 13c Dandia A, Kumari S, Soni P. Eur. Chem. Bull. 2013; 2: 1004
    • 13d Periyasami G, Arumugam N, Rahaman M, Kumar RS, Manikandan M, Alfayez MA, Premnath D, Aldalbahi A. RSC Adv. 2018; 8: 16303
    • 14a Korotaev VY, Barkov AY, Moshkin VS, Matochkina EG, Kodess MI, Sosnovskikh VY. Tetrahedron 2013; 69: 8602
    • 14b Korotaev VY, Kutyashev IB, Barkov AY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2017; 53: 1192
    • 14c Kutyashev IB, Barkov AY, Korotaev VY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2019; 55: 529
    • 14d Kutyashev IB, Barkov AY, Zimnitskiy NS, Korotaev VY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2019; 55: 861
    • 15a Korotaev VY, Kutyashev IB, Barkov AY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2017; 53: 597
    • 15b Kula K, Dobosz J, Jasinski R, Kacka-Zych A, Lapczuk-Krygier A, Miroslaw B, Demchuk OM. J. Mol. Struct. 2020; 1203: 127473