Synlett 2020; 31(13): 1237-1243
DOI: 10.1055/s-0040-1707130
synpacts
© Georg Thieme Verlag Stuttgart · New York

Latent (Pro)Nucleophiles in Enantioselective Lewis Base Catalyzed Allylic Substitutions

Markus Lange
,
You Zi
,
Financial support from Carl-Zeiss Foundation (Carl-Zeiss-Stiftung endowed professorship to I.V.), Friedrich Schiller University Jena and State of Thuringia (fellowship to M.L.) is gratefully acknowledged.
Further Information

Publication History

Received: 27 March 2020

Accepted after revision: 02 May 2020

Publication Date:
04 June 2020 (online)


Abstract

The use of latent nucleophiles, which are molecules that are not nucleophilic but can be activated to act as a nucleophile at an opportune time during the reaction, expands the scope of Lewis base catalyzed reactions. Here, we provide an overview of the concept and show examples of applications to N- and C-centered nucleophiles in allylic substitutions. N- and C-silyl compounds are superior latent (pro)nucleophiles in Lewis base catalyzed reactions with allylic fluorides in which the formation of the strong Si–F bond serves as the driving force for the reactions. The latent (pro)nucleophiles ensure high regio­selectivity in these reactions and enable enantioselective transformations of Morita–Baylis–Hillman adducts by the use of common chiral Lewis base catalysts.

1 Introduction

2 Substitution of MBH Carbonates

3 The Concept of Latent (Pro)Nucleophiles

4 Enantioselective Allylation of N-Heterocycles

5 Enantioselective Phosphonyldifluoromethylation of Allylic Fluorides

6 Conclusion

 
  • References

  • 1 Gomollón-Bel F. Chem. Int. 2019; 41: 12
    • 2a Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 2b Ooi T. ACS Catal. 2015; 5: 6980
    • 2c List B. Acc. Chem. Res. 2004; 37: 548
    • 2d Rodríguez B, Rantanen T, Bolm C. Angew. Chem. Int. Ed. 2006; 45: 6924
    • 2e Huy PH. Eur. J. Org. Chem. 2020; 10
  • 3 Lee J.-W, Mayer-Gall T, Opwis K, Song CE, Gutmann JS, List B. Science 2013; 341: 1225
  • 4 Meninno S. ChemSusChem 2020; 13: 439
    • 5a Kim JN, Lee HJ, Gong JH. Tetrahedron Lett. 2002; 43: 9141
    • 5b Shafiq Z, Liu L, Liu Z, Wang D, Chen Y.-J. Org. Lett. 2007; 9: 2525
    • 5c Wang F, Li S, Qu M, Zhao M.-X, Liu L.-J, Shi M. Chem. Commun. 2011; 47: 12813
    • 5d Li Z, Frings M, Yu H, Raabe G, Bolm C. Org. Lett. 2018; 20: 7367
  • 6 Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 7a Basavaiah D, Kumaragurubaran N, Sharada DS, Reddy RM. Tetrahedron 2001; 57: 8167
    • 7b Yao L, Wang C.-J. Adv. Synth. Catal. 2015; 357: 384
    • 7c Zhong N.-J, Wang Y.-Z, Cheng L, Wang D, Liu L. Org. Biomol. Chem. 2018; 16: 5214
  • 8 Baidya M, Remennikov GY, Mayer P, Mayr H. Chem. Eur. J. 2010; 16: 1365
    • 9a Du Y, Han X, Lu X. Tetrahedron Lett. 2004; 45: 4967
    • 9b Wu L, Zhang Q.-R, Huang J.-R, Li Y, Su F, Dong L. Tetrahedron 2017; 73: 3966
    • 10a Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
    • 10b Zhuang Z, Pan F, Fu J.-G, Chen J.-M, Liao W.-W. Org. Lett. 2011; 13: 6164
    • 10c Huang L, Wei Y, Shi M. Org. Biomol. Chem. 2012; 10: 1396
    • 10d Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Adv. Synth. Catal. 2011; 353: 3301
    • 10e Zhao S, Jin L, Chen Z.-L, Rui X, He J.-Y, Xia R, Chen K, Chen X.-X, Yin Z.-J, Chen X. RSC Adv. 2019; 9: 11585
    • 10f Feng X, Yuan Y.-Q, Cui H.-L, Jiang K, Chen Y.-C. Org. Biomol. Chem. 2009; 7: 3660
    • 11a Kamlar M, Císařová I, Hybelbauerová S, Veselý J. Eur. J. Org. Chem. 2017; 1926
    • 11b Formánek B, Šimek M, Kamlar M, Císařová I, Veselý J. Synthesis 2019; 51: 907
    • 11c Zi Y, Lange M, Schüler P, Krieck S, Westerhausen M, Vilotijevic I. Synlett 2020; 31: 575
    • 11d van Steenis DJ. V. C, Marcelli T, Lutz M, Spek AL, van Maarseveen JH, Hiemstra H. Adv. Synth. Catal. 2007; 349: 281
    • 12a Nishimine T, Fukushi K, Shibata N, Taira H, Tokunaga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2013; 53: 517
    • 12b Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 6744
    • 12c Nishimine T, Taira H, Mori S, Matsubara O, Tokunaga E, Akiyama H, Soloshonok VA, Shibata N. Chem. Commun. 2017; 53: 1128
  • 13 Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
  • 14 Zi Y, Lange M, Vilotijevic I. Chem. Commun. 2020; 56: 5689
    • 15a Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR, Mayr H. J. Org. Chem. 2006; 71: 9088
    • 15b Nigst TA, Westermaier M, Ofial AR, Mayr H. Eur. J. Org. Chem. 2008; 2369
    • 16a Ge SQ, Hua YY, Xia M. Ultrason. Sonochem. 2009; 16: 743
    • 16b Kwon S.-H, Cho C.-W. Bull. Korean Chem. Soc. 2008; 29: 1835
  • 17 Hosomi A, Shirahata A, Sakurai H. Tetrahedron Lett. 1978; 3043
  • 18 Jourdan J.-P, Since M, El Kihel L, Lecoutey C, Corvaisier S, Legay R, Sopková-de Oliveira Santos J, Cresteil T, Malzert-Fréon A, Rochais C, Dallemagne P. ChemMedChem 2017; 12: 913
  • 19 Lange M, Zi Y, Vilotijevic I. J. Org. Chem. 2020; 85: 1259
  • 20 There will be examples where latency related to the presence of the silyl group is relevant in reaction development, which is why term ‘latent pronucleophile’ is more accurate than the simple term ‘pronucleophile’. These examples are not described here and go beyond the scope of the current discussion.
  • 21 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 22a Bialy L, Waldmann H. Angew. Chem. Int. Ed. 2005; 44: 3814
    • 22b Hoffmann W, Langenhan J, Huhmann S, Moschner J, Chang R, Accorsi M, Seo J, Rademann J, Meijer G, Koksch B, Bowers MT, von Helden G, Pagel K. Angew. Chem. Int. Ed. 2019; 58: 8216
    • 22c Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kaluarachchi KK, Chen X, Bast RC. Jr, Liao WS. J. Med. Chem. 2011; 54: 3549
    • 22d Bouwman S, Orru RV, Ruijter E. Org. Biomol. Chem. 2015; 13: 1317
  • 23 Trost BM, Gholami H, Zell D. J. Am. Chem. Soc. 2019; 141: 11446