Synlett 2020; 31(17): 1649-1655
DOI: 10.1055/s-0040-1707172
synpacts
© Georg Thieme Verlag Stuttgart · New York

Isoprene: A Promising Coupling Partner in C–H Functionalizations

Wei-Song Zhang
a   Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China   Email: qachen@dicp.ac.cn
,
Yan-Cheng Hu
a   Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. of China
,
Qing-An Chen
a   Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. of China
› Author Affiliations
We are grateful for financial support from the Dalian Institute of Chemical Physics, Dalian Outstanding Young Scientific Talent, and the National Natural Science Foundation of China (21702204, 21801239).
Further Information

Publication History

Received: 12 May 2020

Accepted after revision: 30 May 2020

Publication Date:
02 July 2020 (online)


Abstract

Five-carbon dimethylallyl units, such as prenyl and reverse-prenyl, are widely distributed in natural indole alkaloids and terpenoids. In conventional methodologies, these valuable motifs are often derived from substrates bearing leaving groups, but these processes are accompanied by the generation of stoichiometric amounts of by-products. From an economical and environmental point of view, the basic industrial feedstock isoprene is an ideal alternative precursor. However, given that electronically unbiased isoprene might undergo six possible addition modes in the coupling reactions, it is difficult to control the selectivity. This article summarizes the strategies we have developed to achieve regioselective C–H functionalizations of isoprene under transition-metal and acid catalysis.

1 Introduction

2 Catalytic Coupling of Indoles with Isoprene

3 Catalytic Coupling of Formaldehyde, Arenes and Isoprene

4 Catalytic Coupling of 4-Hydroxycoumarins with Isoprene

5 Catalytic Coupling of Cyclic 1,3-Diketones with Isoprene

6 Conclusion and Outlook

 
  • References

  • 2 Achenbach H. Pure Appl. Chem. 1986; 58: 653
  • 3 Makangara JJ, Henry L, Jonker SA, Nkunya MH. H. Phytochemistry 2004; 65: 227
  • 4 Cordero-Rivera RE, Meléndez-Rodríguez M, Suárez-Castillo OR, Bautista-Hernández CI, Trejo-Carbajal N, Cruz-Borbolla J, Castelán-Durte LE, Morales-Ríos RS, Joseph-Nathan P. Tetrahedron: Asymmetry 2015; 26: 710
  • 5 McAfoos TJ, Li S, Tsukamoto S, Sherman DH, Willams RM. Heterocycles 2010; 82: 461
  • 6 Ruchti J, Carreira EM. J. Am. Chem. Soc. 2014; 136: 16756
  • 7 Bellavance G, Barriault L. Angew. Chem. Int. Ed. 2014; 53: 6701
  • 8 Lindel T, Marsch N, Adla SK. Top. Curr. Chem. 2012; 309: 67
    • 10a Kimura M, Futamata M, Mukai R, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
    • 10b Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
    • 10c Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
    • 10d Usui L, Schmidt S, Keller M, Breit B. Org. Lett. 2008; 10: 1207
    • 10e Gruber S, Zaitsev AB, Worle M, Pregosin PS, Veiros LF. Organometallics 2009; 28: 3437
    • 10f Yang HW, Fang L, Zhang M, Zhu CJ. Eur. J. Org. Chem. 2009; 666
    • 10g Sundararaju B, Achard M, Demerseman B, Toupet L, Sharma GV. M, Bruneau C. Angew. Chem. Int. Ed. 2010; 49: 2782
    • 10h Zhang X, Yang Z.-P, Liu C, You S.-L. Chem. Sci. 2013; 4: 3239
    • 10i Zhang X, Han L, You S.-L. Chem. Sci. 2014; 5: 1059
    • 11a Gerbino DC, Mandolesi SD, Schmalz H.-G, Podestá JC. Eur. J. Org. Chem. 2009; 3964
    • 11b Ren H, Zhang Z, Xu L, Chen Z, Liu Z, Miao M, Song J. Synlett 2015; 26: 2784
    • 11c Bose SK, Brand S, Omoregie HO, Haehnel M, Maier J, Bringmann G, Marder TB. ACS Catal. 2016; 6: 8332
    • 12a Durandetti M, Meignein C, Perichon J. J. Org. Chem. 2003; 68: 3121
    • 12b Dubovyk I, Watson ID. G, Yudin AK. J. Am. Chem. Soc. 2007; 129: 14172
    • 12c Vece V, Ricci J, Poulain-Martini S, Nava P, Carissan Y, Humbel S, Duñach E. Eur. J. Org. Chem. 2010; 6239
    • 13a Muraoka T, Itoh K, Matsuda I. Tetrahedron Lett. 2000; 41: 8807
    • 13b Ashfeld BL, Miller KA, Martin SF. Org. Lett. 2004; 6: 1321
    • 13c Ashfeld BL, Miller KA, Smith AJ, Tran K, Martin SF. J. Org. Chem. 2007; 72: 9018
    • 13d Wilt JC, Faller JW. Org. Lett. 2004; 7: 633; Organometallics; 2005, 24: 5076
    • 13e Johns AM, Liu Z, Hartwig JF. Angew. Chem. Int. Ed. 2007; 46: 7259
    • 13f Holzwarth M, Dieskau A, Tabassam M, Plietker B. Angew. Chem. Int. Ed. 2009; 48: 7251
    • 13g Trost BM, Malhotra S, Chan WH. J. Am. Chem. Soc. 2011; 133: 7328
    • 13h Holzwarth MS, Frey W, Plietker B. Chem. Commun. 2011; 47: 11113
    • 13i Klein JE. M. N, Holzwarth MS, Hohloch S, Sarkar B, Plietker B. Eur. J. Org. Chem. 2013; 6310
    • 13j Hethcox JC, Shockley SE, Stoltz BM. Angew. Chem. Int. Ed. 2018; 57: 8664
    • 13k Tu HF, Zhang X, Zheng C, Zhu M, You S.-L. Nat. Catal. 2018; 1: 601
    • 13l Schlatzer T, Schröder H, Trobe M, Fadum CL, Stangl S, Schlögl C, Weber H, Breinbauer R. Adv. Synth. Catal. 2019; 362: 331
    • 14a Yang Y, Mustard TJ. L, Cheong PH.-Y, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 14098
    • 14b Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
    • 15a Baker R. Chem. Rev. 1973; 73: 487
    • 15b Kurosawa H. J. Organomet. Chem. 1987; 334: 243
    • 15c Consiglio G, Waymouth RM. Chem. Rev. 1989; 89: 257
    • 15d Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 15e Lichtenberg C, Okuda J. Angew. Chem. Int. Ed. 2013; 52: 5228
    • 16a Kuzuyama T, Seto H. Nat. Prod. Rep. 2003; 20: 171
    • 16b Chaves JE, Melis A. FEBS Lett. 2018; 592: 2059
    • 16c Zhou YJ, Kerkhoven EJ, Nielsen J. Nat. Energy 2018; 3: 925
  • 17 Lin Y.-H, Shen X.-L, Yuan Q.-P, Yan Y.-J. Nat. Commun. 2013; 4: 2603
  • 18 Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026

    • For selected examples for coupling dienes with electrophiles, see:
    • 19a Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
    • 19b Omura S, Fukuyama T, Horiguchi J, Murakami Y, Ryu I. J. Am. Chem. Soc. 2008; 130: 14094
    • 19c Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
    • 19d Chen QA, Kim DK, Dong VM. J. Am. Chem. Soc. 2014; 136: 3772
    • 19e Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 14210
    • 19f Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 5062
    • 19g Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251

    • For selected examples for coupling dienes with nucleo­philes, see:
    • 19h Johns AM, Liu ZJ, Hartwig JF. Angew. Chem. Int. Ed. 2007; 46: 7259
    • 19i Banerjee D, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 1630
    • 19j Roberts CC, Matias DM, Goldfogel MJ, Meek SJ. J. Am. Chem. Soc. 2015; 137: 6488
    • 19k Marcum JS, Roberts CC, Manan RS, Cervarich TN, Meek SJ. J. Am. Chem. Soc. 2017; 139: 15580
    • 19l Yang XH, Lu A, Dong VM. J. Am. Chem. Soc. 2017; 139: 14049
    • 19m Shen HC, Wu YF, Zhang Y, Fan LF, Han ZY, Gong LZ. Angew. Chem. Int. Ed. 2018; 57: 2372
  • 20 Hu Y.-C, Ji D.-W, Zhao C.-Y, Zheng H, Chen Q.-A. Angew. Chem. Int. Ed. 2019; 58: 5438
    • 21a Kimura M, Matsuo S, Shibata K, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 3386
    • 21b Kimura M, Shibata K, Koudahashi Y, Tamaru Y. Tetrahedron Lett. 2000; 41: 6789
    • 21c Morgan JB, Morken JP. Org. Lett. 2003; 5: 2573
    • 21d Kimura M, Ezoe A, Mori M, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 201
    • 21e Cho HY, Morken JP. J. Am. Chem. Soc. 2008; 130: 16140
    • 21f Ohira Y, Hayashi M, Mori T, Onodera G, Kimura M. New J. Chem. 2014; 38: 330
    • 21g Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
    • 22a Boerth JA, Hummel JR, Ellman JA. Angew. Chem. Int. Ed. 2016; 55: 12650
    • 22b Boerth JA, Ellman JA. Angew. Chem. Int. Ed. 2017; 56: 9976
    • 22c Boerth JA, Maity S, Williams SK, Mercado BQ, Ellman JA. Nat. Catal. 2018; 1: 673
    • 22d Li R, Ju C.-W, Zhao D. Chem. Commun. 2019; 55: 695
  • 23 Yang J, Ji D.-W, Hu Y.-C, Min X.-T, Zhou X.-G, Chen Q.-A. Chem. Sci. 2019; 10: 9560
    • 24a Poumale HM. P, Hamm R, Zang Y, Shiono Y, Kuete V. Coumarins and Related Compounds from the Medicinal Plants of Africa . In Medicinal Plant Research in Africa . Kuete V. Elsevier; Oxford: 2013: 261
    • 24b Sarker SD, Nahar L. Progress in the Chemistry of Naturally Occurring Coumarins . In Progress in the Chemistry of Organic Natural Products . Kinghorn AD, Falk H, Gibbons S, Kobayashi JI. Springer International Publishing; Cham: 2017: 241
    • 25a Yang RY, Kizer D, Wu H, Volckova E, Miao XS, Ali SM, Tandon M, Savage RE, Chan TC, Ashwell MA. Bioorg. Med. Chem. 2008; 16: 5635
    • 25b Jung EJ, Park BH, Lee YR. Green Chem. 2010; 12: 2003
    • 25c Appendino G, Cravotto G, Giovenzana GB, Palmisano G. J. Nat. Prod. 1999; 62: 1627
  • 26 Li Y, Hu Y.-C, Zheng H, Ji D.-W, Cong Y.-F, Chen Q.-A. Eur. J. Org. Chem. 2019; 6510
  • 27 Li Y, Hu Y.-C, Zhang W.-S, He G.-C, Cong Y.-F, Chen Q.-A. Chin. J. Catal. 2020; 41: 1401