Subscribe to RSS
DOI: 10.1055/s-0040-1707275
Catalyst Development in the Dehydrogenative Borylation of Alkenes for the Synthesis Vinylboronate Esters
We are grateful to the National Natural Science Foundation of China (21901247, 91845108, 21902167), the Natural Science Foundation of Jiangsu Province (BK20180246), and the Innovation and Entrepreneurship Talents Plan of Jiangsu Province for their generous financial support.
Abstract
Catalytic dehydrogenative borylation of alkenes provides an efficient and straightforward method for the preparation of synthetically useful vinylboronate esters. Here, we present a summary of developments and recent advances in this area, classified according to the various reactants and catalyst systems.
1 Introduction
2 Catalytic Dehydrogenative Borylation of Alkenes by Using Boranes
3 Catalytic Dehydrogenative Borylation of Alkenes by Using Diboranes
4 Zirconium-Catalyzed H 2 –Acceptorless Dehydrogenative Borylation of Alkenes with Boranes
5 Conclusion and Outlook
Publication History
Received: 21 May 2020
Accepted after revision: 03 August 2020
Article published online:
22 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Carreras J, Caballero A, Pérez PJ. Chem. Asian J. 2019; 14: 329
- 2 Hilt G, Bolze P. Synthesis 2005; 2091
- 3a Fontani P, Carboni B, Vaultier M, Maas G. Synthesis 1991; 605
- 3b Carreras J, Caballero A, Pérez PJ. Angew. Chem. Int. Ed. 2018; 57: 2334
- 4 Livshits AB, Al Aziz Al Quntar A, Yekhtin Z, Srebnik M, Dagan A. Bioorg. Med. Chem. Lett. 2013; 23: 507
- 5 Brown HC, Bhat NG. Tetrahedron Lett. 1988; 29: 21
- 6 Gridnev ID, Miyaura N, Suzuki A. Organometallics 1993; 12: 589
- 7 Takagi J, Takahashi K, Ishiyama T, Miyaura N. J. Am. Chem. Soc. 2002; 124: 8001
- 8 Morrill C, Grubbs RH. J. Org. Chem. 2003; 68: 6031
- 9 Reid WB, Spillane JJ, Krause SB, Watson DA. J. Am. Chem. Soc. 2016; 138: 5539
- 10 Alonso DM, Bond JQ, Dumesic JA. Green Chem. 2010; 12: 1493
- 11 Geier SJ, Westcott SA. Rev. Inorg. Chem. 2014; 35: 69
- 12a Männig D, Nöth H. Angew. Chem. Int. Ed. 1985; 24: 878
- 12b Evans DA, Fu GC, Hoveyda AH. J. Am. Chem. Soc. 1992; 114: 6671
- 12c Yamamoto Y, Fujikawa R, Umemoto T, Miyaura N. Tetrahedron 2004; 60: 10695
- 12d Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
- 12e Obligacion JV, Chirik PJ. Org. Lett. 2013; 15: 2680
- 12f Obligacion JV, Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
- 12g Zhang L, Zuo Z, Leng X, Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
- 12h Tseng K.-NT, Kampf JW, Szymczak NK. ACS Catal. 2014; 5: 411
- 12i Smith JR, Collins BS. L, Hesse MJ, Graham MA, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9148
- 12j Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
- 12k Wang G, Liang X, Chen L, Gao Q, Wang J.-G, Zhang P, Peng Q, Xu S. Angew. Chem. Int. Ed. 2019; 58: 8187
- 12l Vijaykumar G, Bhunia M, Mandal SK. Dalton Trans. 2019; 48: 5779
- 13 Davan T, Corcoran EW. Jr, Sneddon LG. Organometallics 1983; 2: 1693
- 14 Llynch AT, Sneddon LG. J. Am. Chem. Soc. 1989; 111: 6201
- 15 Brown JM, Lloyd-Jones GC. J. Chem. Soc., Chem. Commun. 1992; 710
- 16 Burgess K, Van der Donk WA, Westcott SA, Marder TB, Baker RT, Calabrese JC. J. Am. Chem. Soc. 1992; 114: 9350
- 17 Westcott SA, Marder TB, Baker RT. Organometallics 1993; 12: 975
- 18 Murata M, Watanabe S, Masuda Y. Tetrahedron Lett. 1999; 40: 2585
- 19 Brown AN, Zakharov LN, Mikulas T, Dixon DA, Liu S.-Y. Org. Lett. 2014; 16: 3340
- 20 Morimoto M, Miura T, Murakami M. Angew. Chem. Int. Ed. 2015; 54: 12659
- 21 Caballero A, Sabo-Etienne S. Organometallics 2007; 26: 1191
- 22 Wang C, Wu C, Ge S. ACS Catal. 2016; 6: 7585
- 23 Motry DH, Smith MR. III. J. Am. Chem. Soc. 1995; 117: 6615
- 24 Motry DH, Brazil AG, Smith MR. III. J. Am. Chem. Soc. 1997; 119: 2743
- 25 Neeve EC, Geier SJ, Mkhalid IA, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 26 Mkhalid IA, Coapes RB, Edes SN, Coventry DN, Souza FE, Thomas RL, Hall JJ, Bi SW, Lin Z, Marder TB. Dalton Trans. 2008; 1055
- 27 Kondoh A, Jamison TF. Chem. Commun. 2010; 46: 907
-
28
Olsson VJ,
Szabó KJ.
Angew. Chem. Int. Ed. 2007; 46: 6891
- 29 Sasaki I, Doi H, Hashimoto T, Kikuchi T, Ito H, Ishiyama T. Chem. Commun. 2013; 49: 7546
- 30 Takaya J, Kirai N, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 12980
- 31 Kirai N, Iguchi S, Ito T, Takaya J, Iwasawa N. Bull. Chem. Soc. Jpn. 2013; 86: 784
- 32 Hu T.-J, Zhang G, Chen Y.-H, Feng C.-G, Lin G.-Q. J. Am. Chem. Soc. 2016; 138: 2897
- 33 Ohmura T, Takasaki Y, Furukawa H, Suginome M. Angew. Chem. Int. Ed. 2009; 48: 2372
- 34 Wen H, Zhang L, Zhu S, Liu G, Huang Z. ACS Catal. 2017; 7: 6419
- 35 Mazzacano TJ, Mankad NP. ACS Catal. 2017; 7: 146
- 36 Yoshii D, Jin X, Mizsuno N, Yamaguchi K. ACS Catal. 2019; 9: 3011
- 37a Tilley TD, Woo H.-G. In Inorganic and Organometallic Oligomers and Polymers . Harrod JF, Laine RM. Springer; Dordrecht: 1991: 3
- 37b Bourg S, Corriu RJ. P, Enders M, Moreau JJ. E. Organometallics 1995; 14: 564
- 37c Clark TJ, Russell CA, Manners I. J. Am. Chem. Soc. 2006; 128: 9582
- 38 Shi X, Li S, Wu L. Angew. Chem. Int. Ed. 2019; 58: 16167