Synlett 2021; 32(03): 229-234
DOI: 10.1055/s-0040-1707296
synpacts

Chiral Auxiliaries for Stereoselective Electrophilic Aromatic Substitutions

Mona Sharafi
,
Joseph P. Campbell
,
Kyle E. Murphy
,
Reilly Osadchey Brown
,
Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT 05405, USA   Email: Severin.schneebeli@uvm.edu
› Author Affiliations
This research was supported by a National Science Foundation (NSF) grant from the Chemistry Division (grant number: CHE-1848444) awarded to S.T.S. R.O.B. was supported by a Summer Undergraduate Research Fellowship at the University of Vermont. Computational resources for this paper were provided by the Vermont Advanced Computing Core (VACC).


Abstract

Electrophilic aromatic substitution reactions are of profound importance for the synthesis of biologically active compounds and other advanced materials. They represent an important means to activate specific aromatic C–H bonds without requiring transition-metal catalysts. Surprisingly, few stereoselective variants are known for electrophilic aromatic substitutions, which limits the utility of these classical reactions for stereoselective synthesis. While many electrophilic aromatic substitutions lead to achiral products (due to the planar nature of aromatic rings), there are important examples where chiral products are produced, including desymmetrization reactions of aromatic cyclophanes and of prochiral substrates with multiple aromatic rings. This Synpacts article now illustrates how chiral arms, when placed precisely above and underneath delocalized carbocations, can act as chiral auxiliaries to convert classical electrophilic aromatic substitution reactions into powerful diastereo- and enantioselective transformations.



Publication History

Received: 17 July 2020

Accepted after revision: 28 August 2020

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: J. P. Campbell, Integrity Industrial Ink Jet Integration, LLC, West Lebanon, NH 03784, USA.
  • 2 New address: K. E. Murphy, Department of Chemistry, University of North Carolina, Asheville, NC 28804, USA.
  • 3 New address: R. Osadchey Brown, Department of Chemistry, Boston University, Boston, MA 02215, USA.
    • 4a Booth G. Nitro Compounds, Aromatic. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2000
    • 4b Smith MB. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 8th ed. Wiley-Interscience; New York: 2007
    • 4c Schore NE, Vollhardt PC. Organic Chemistry, 6th ed. W. H. Freeman and Company; New York: 2010
    • 4d Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS. Science 2011; 332: 574
    • 4e Galabov B, Nalbantova D, Schleyer P, Schaefer HF. Acc. Chem. Res. 2016; 49: 1191
    • 5a de Queiroz JF, Carneiro JW, Sabino AA, Sparrapan R, Eberlin MN, Esteves PM. J. Org. Chem. 2006; 71: 6192
    • 5b Campbell JP, Rajappan SC, Jaynes TJ, Sharafi M, Ma YT, Li J, Schneebeli ST. Angew. Chem. Int. Ed. 2019; 58: 1035
    • 6a Kuck D, Schuster A, Ohlhorst B, Sinnwell V, de Meijere A. Angew. Chem., Int. Ed. Engl. 1989; 28: 595
    • 6b Markopoulos G, Henneicke L, Shen J, Okamoto Y, Jones PG, Hopf H. Angew. Chem. Int. Ed. 2012; 51: 12884
    • 6c Klotzbach S, Schherpf T, Beuerle F. Chem. Commun. 2014; 50: 12454
    • 6d Klotzbach S, Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
    • 6e Xu W.-R, Xia G.-J, Chow H.-F, Cao X.-P, Kuck D. Chem. Eur. J. 2015; 21: 12011
    • 6f Dhara A, Weinmann J, Krause A.-M, Beuerle F. Chem. Eur. J. 2016; 22: 12473
    • 6g Beuerle F, Dhara A. Synthesis 2018; 50: 2867
    • 6h Payne JT, Butkovich PH, Gu Y, Kunze KN, Park HJ, Wang DS, Lewis JC. J. Am. Chem. Soc. 2018; 140: 546
    • 6i Wagner P, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2018; 57: 11321
    • 6j He L, Ng C.-F, Yi Y, Liu Z, Kuck D, Chow H.-F. Angew. Chem. Int. Ed. 2018; 57: 13635
    • 6k Di Iorio N, Crotti S, Bencivenni G. Chem. Rec. 2019; 19: 2095
    • 6l Genov GR, Douthwaite JL, Lahdenpera AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246
    • 6m Wagner P, Rominger F, Oeser T, Mastalerz M. J. Org. Chem. 2020; 85: 3981
    • 7a Liu X, Weinert ZJ, Sharafi M, Liao C, Li J, Schneebeli ST. Angew. Chem. Int. Ed. 2015; 54: 12772
    • 7b Beaudoin D, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15599
    • 7c Li Z.-M, Li Y.-W, Cao X.-P, Chow H.-F, Kuck D. J. Org. Chem. 2018; 7: 3433
    • 7d Rommelmann P, Greschner W, Ihrig S, Neumann B, Stammler H.-G, Gröger H, Kuck D. Eur. J. Org. Chem. 2018; 3891
    • 7e Campbell JP, Sharafi M, Murphy KE, Bocanegra JL, Schneebeli ST. Supramol. Chem. 2019; 31: 565
    • 7f Li ZM, Tan Y, Ma YP, Cao XP, Chow HF, Kuck D. J. Org. Chem. 2020; 85: 6478
    • 8a Holl MG, Struble MD, Singal P, Siegler MA, Lectka T. Angew. Chem. Int. Ed. 2016; 55: 8266
    • 8b Murphy KE, Bocanegra JL, Liu X, Chau HK, Lee PC, Li J, Schneebeli ST. Nat. Commun. 2017; 8: 14840
    • 8c Guan L, Holl MG, Pitts CR, Struble MD, Siegler MA, Lectka T. J. Am. Chem. Soc. 2017; 139: 14913
    • 8d Bume DD, Pitts CR, Ghorbani F, Harry SA, Capilato JN, Siegler MA, Lectka T. Chem. Sci. 2017; 8: 6918
    • 8e Sharafi M, McKay KT, Ivancic M, McCarthy DR, Dudkina N, Murphy KE, Rajappan SC, Campbell JP, Shen Y, Badireddy AR, Li J, Schneebeli ST. Chem 2020; 6: 1469
    • 8f Rajappan SC, McCarthy DR, Campbell JP, Ferrell JB, Sharafi M, Ambrozaite O, Li J, Schneebeli ST. Angew. Chem. Int. Ed. 2020; 59: 16668
    • 9a Metzger U, Schall C, Zocher G, Unsold I, Stec E, Li SM, Heide L, Stehle T. Proc. Natl. Acad. Sci. USA 2009; 106: 14309
    • 9b Tanner ME. Nat. Prod. Rep. 2015; 32: 88
  • 10 www.webofknowledge.com (accessed July 08, 2020).
  • 11 Botvay A, Máthé Á, Pöppl L. Polymer 1999; 40: 4965
    • 12a Shackelford SA, Anderson MB, Christie LC, Goetzen T, Guzman MC, Hananel MA, Kornreich WD, Li H, Pathak VP, Rabinovich AK, Rajapakse RJ, Truesdale LK, Tsank SM, Vazir HN. J. Org. Chem. 2003; 68: 267
    • 12b Sydlik SA, Chen Z, Swager TM. Macromolecules 2011; 44: 976
    • 12c Nieves-Quinones Y, Singleton DA. J. Am. Chem. Soc. 2016; 138: 15167
  • 14 Tang RJ, Milcent T, Crousse B. J. Org. Chem. 2018; 83: 930
  • 16 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
    • 17a Vosko SH, Wilk L, Nusair M. Can. J. Phys. 1980; 58: 1200
    • 17b Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
    • 17c Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 17d Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623