CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 129-142
DOI: 10.1055/s-0040-1708813
Focus Issue
Practical Review
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

How to Determine the Role of an Additive on the Length of Supramolecular Polymers?

a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
Lafayette N. J. de Windt
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
,
a  Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b  Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
› Author Affiliations
Funding Information The authors received funding from the Netherlands Organization for Scientific Research (NWO-TOP PUNT grant No. 10018944, NWO-Veni grant 722.017.003, and ECHO grant 713.016.003), the European Union's Horizon 2020 Research and Innovation program (Marie Sklodowska-Curie grant agreement No. 642083), and the Dutch Ministry of Education, Culture, and Science (Gravity program 024.001.035).
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 26 February 2020

Publication Date:
22 April 2020 (online)


Abstract

In polymer chemistry, modulation of sequence and control over chain length are routinely applied to alter and fine-tune the properties of covalent (co)polymers. For supramolecular polymers, the same principles underlying this control have not been fully elucidated up to this date. Particularly, rational control over molecular weight in dynamic supramolecular polymers is not trivial, especially when a cooperative mechanism is operative. We start this review by summarizing how molecular-weight control has been achieved in seminal examples in the field of supramolecular polymerizations. Following this, we propose to classify the avenues taken to control molecular weights in supramolecular polymerizations. We focus on dynamic cooperative supramolecular polymerization as this is the most challenging in terms of molecular weight control. We use a mass-balance equilibrium model to predict how the nature of the interaction of an additive B with the monomers and supramolecular polymers of component A affects the degree of aggregation and the degree of polymerization. We put forward a classification system that distinguishes between B acting as a chain capper, a sequestrator, a comonomer, or an intercalator. We also highlight the experimental methods applied to probe supramolecular polymerization processes, the type of information they provide in relation to molecular weight and degree of aggregation, and how this can be used to classify the role of B. The guidelines and classification delineated in this review to assess and control molecular weights in supramolecular polymers can serve to reevaluate exciting systems present in current literature and contribute to broaden the understanding of multicomponent systems.

[Supporting Information]

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1708813.


These authors contributed equally.


Supporting Information

 
  • References

  • 1 Staudinger H. Ber. Dtsch. Chem. Ges. 1920; 53: 1073
  • 2 De Greef TF. A, Smulders MM. J, Wolffs M, Schenning AP. H. J, Sijbesma RP, Meijer EW. Chem. Rev. 2009; 109: 5687
  • 3 Matern J, Dorca Y, Sánchez L, Fernández G. Angew. Chem. Int. Ed. 2019; 58: 16730
  • 4 Wehner M, Würthner F. Nat. Rev. Chem. 2020; 4: 38
  • 5 Besenius P. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 34
  • 6 Adelizzi B, Van Zee NJ, de Windt LN. J, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2019; 141: 6110
  • 7 Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJ. B, Hirschberg JH. K. K, Lange RF. M, Lowe JK. L, Meijer EW. Science 1997; 278: 1601
  • 8 Berl V, Schmutz M, Krische MJ, Khoury RG, Lehn J-M. Chem. Eur. J. 2002; 8: 1227
  • 9 Harada A, Takashima Y, Yamaguchi H. Chem. Soc. Rev. 2009; 38: 875
  • 10 Yang L, Tan X, Wang Z, Zhang X. Chem. Rev. 2015; 115: 7196
  • 11 Michelsen U, Hunter CA. Angew. Chem. Int. Ed. 2000; 39: 764
  • 12 Beldjoudi Y, Narayanan A, Roy I, Pearson TJ, Cetin MM, Nguyen MT, Krzyaniak MD, Alsubaie FM, Wasielewski MR, Stupp SI, Stoddart JF. J. Am. Chem. Soc. 2019; 141: 17783
  • 13 Zhao D, Moore JS. Org. Biomol. Chem. 2003; 1: 3471
  • 14 Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA. Science 2007; 317: 644
  • 15 Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, Winnik MA, Manners I. Nat. Chem. 2010; 2: 566
  • 16 Patra SK, Ahmed R, Whittell GR, Lunn DJ, Dunphy EL, Winnik MA, Manners I. J. Am. Chem. Soc. 2011; 133: 8842
  • 17 Qiu H, Hudson ZM, Winnik MA, Manners I. Science 2015; 347: 1329
  • 18 Rupar PA, Chabanne L, Winnik MA, Manners I. Science 2012; 337: 559
  • 19 Hudson ZM, Lunn DJ, Winnik MA, Manners I. Nat. Commun. 2014; 5: 3372
  • 20 Pearce S, He X, Hsiao M-S, Harniman RL, MacFarlane LR, Manners I. Macromolecules 2019; 52: 6068
  • 21 Petzetakis N, Dove AP, O'Reilly RK. Chem. Sci. 2011; 2: 955
  • 22 Robinson ME, Lunn DJ, Nazemi A, Whittell GR, De Cola L, Manners I. Chem. Commun. 2015; 51: 15921
  • 23 Robinson ME, Nazemi A, Lunn DJ, Hayward DW, Boott CE, Hsiao MS, Harniman RL, Davis SA, Whittell GR, Richardson RM, De Cola L, Manners I. ACS Nano 2017; 11: 9162
  • 24 Guérin G, Wang H, Manners I, Winnik MA. J. Am. Chem. Soc. 2008; 130: 14763
  • 25 Carnall JM. A, Waudby CA, Belenguer AM, Stuart MC. A, Peyralans JJ-P, Otto S. Science 2010; 327: 1502
  • 26 Pal A, Malakoutikhah M, Leonetti G, Tezcan M, Colomb-Delsuc M, Nguyen VD, van der Gucht J, Otto S. Angew. Chem. Int. Ed. 2015; 54: 7852
  • 27 Colomb-Delsuc M, Mattia E, Sadownik JW, Otto S. Nat. Commun. 2015; 6: 7427
  • 28 Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Nat. Chem. 2014; 6: 188
  • 29 Ogi S, Grzeszkiewicz C, Würthner F. Chem. Sci. 2018; 9: 2768
  • 30 Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. J. Am. Chem. Soc. 2015; 137: 3300
  • 31 Ma X, Zhang Y, Zhang Y, Liu Y, Che Y, Zhao J. Angew. Chem. Int. Ed. 2016; 55: 9539
  • 32 Wagner W, Wehner M, Stepanenko V, Ogi S, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 16008
  • 33 Jarrett-Wilkins C, He X, Symons HE, Harniman RL, Faul CF. J, Manners I. Chem. Eur. J. 2018; 24: 15556
  • 34 Hu K, Liu Y, Xiong W, Gong Y, Che Y, Zhao J. Chem. Mater. 2019; 31: 1403
  • 35 Wagner W, Wehner M, Stepanenko V, Würthner F. J. Am. Chem. Soc. 2019; 141: 12044
  • 36 Ogi S, Matsumoto K, Yamaguchi S. Angew. Chem. Int. Ed. 2018; 57: 2339
  • 37 Ghosh G, Ghosh S. Chem. Commun. 2018; 54: 5720
  • 38 Haedler AT, Meskers SC. J, Zha RH, Kivala M, Schmidt H-W, Meijer EW. J. Am. Chem. Soc. 2016; 138: 10539
  • 39 Singh A, Joseph JP, Gupta D, Sarkar I, Pal A. Chem. Commun. 2018; 54: 10730
  • 40 Liu Y, Peng C, Xiong W, Zhang Y, Gong Y, Che Y, Zhao J. Angew. Chem. Int. Ed. 2017; 56: 11380
  • 41 Huang Z, Qin B, Chen L, Xu J-F, Faul CF. J, Zhang X. Macromol. Rapid Commun. 2017; 38: 1700312
  • 42 Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. Science 2015; 347: 646
  • 43 Endo M, Fukui T, Jung SH, Yagai S, Takeuchi M, Sugiyasu K. J. Am. Chem. Soc. 2016; 138: 14347
  • 44 Jung SH, Bochicchio D, Pavan GM, Takeuchi M, Sugiyasu K. J. Am. Chem. Soc. 2018; 140: 10570
  • 45 Pal DS, Kar H, Ghosh S. Chem. Commun. 2018; 54 (08) 928
  • 46 Fukui T, Sasaki N, Takeuchi M, Sugiyasu K. Chem. Sci. 2019; 10: 6770
  • 47 Dhiman S, George SJ. Bull. Chem. Soc. Jpn. 2018; 91: 687
  • 48 Sorrenti A, Leira-Iglesias J, Markvoort AJ, de Greef TF. A, Hermans TM. Chem. Soc. Rev. 2017; 46: 5476
  • 49 van Esch JH, Klajn R, Otto S. Chem. Soc. Rev. 2017; 46: 5474
  • 50 Walther A. Adv. Mater. 2019; 1905111 . Doi: 10.1002/adma.201905111 [epub ahead of print]
  • 51 Jain A, Dhiman S, Dhayani A, Vemula PK, George SJ. Nat. Commun. 2019; 10: 450
  • 52 Boekhoven J, Hendriksen WE, Koper GJ. M, Eelkema R, van Esch JH. Science 2015; 349: 1075
  • 53 Leira-Iglesias J, Tassoni A, Adachi T, Stich M, Hermans TM. Nat. Nanotechnol. 2018; 13: 1021
  • 54 Rieß B, Grötsch RK, Boekhoven J. Chem 2020; 6: 1-27
  • 55 Markvoort AJ, Ten Eikelder HM. M, Hilbers PA. J, De Greef TF. A, Meijer EW. Nat. Commun. 2011; 2: 1
  • 56 ten Eikelder HM. M, Markvoort AJ, de Greef TF. A, Hilbers PA. J. J. Phys. Chem. B 2012; 116: 5291
  • 57 Korevaar PA, Schaefer C, de Greef TF. A, Meijer EW. J. Am. Chem. Soc. 2012; 134: 13482
  • 58 Boileau S, Bouteiller L, Lauprêtre F, Lortie F. New J. Chem. 2000; 24: 845
  • 59 Pinault T, Andrioletti B, Bouteiller L. Beilstein J. Org. Chem. 2010; 6: 869
  • 60 Knoben W, Besseling NA. M, Bouteiller L, Stuart CM. Phys. Chem. Chem. Phys. 2005; 7: 2390
  • 61 Lortie F, Boileau S, Bouteiller L, Chassenieux C, Lauprêtre F. Macromolecules 2005; 38: 5283
  • 62 Knoben W, Besseling NA. M, Cohen Stuart MA. Macromolecules 2006; 39: 2643
  • 63 Knoben W, Besseling NA. M, Cohen Stuart MA. J. Chem. Phys. 2007; 126: 024907
  • 64 Knoben W, Besseling NA. M, Stuart MA. Langmuir 2007; 23: 6095
  • 65 Pinault T, Cannizzo C, Andrioletti B, Ducouret G, Lequeux F, Bouteiller L. Langmuir 2009; 25: 8404
  • 66 Pal DS, Kar H, Ghosh S. Chem. Eur. J. 2016; 22: 16872
  • 67 Smulders MM. J, Nieuwenhuizen MM. L, Grossman M, Filot IA. W, Lee CC, de Greef TF. A, Schenning AP. H. J, Palmans AR. A, Meijer EW. Macromolecules 2011; 44: 6581
  • 68 Long A, Jean M, Albalat M, Vanthuyne N, Giorgi M, Górecki M, Dutasta J, Martinez A. Chirality 2019; 31: 910
  • 69 Karunakaran SC, Cafferty BJ, Peláez-Fernández M, Neselu K, Schmidt-Krey I, Fernandez-Nieves A, Schuster GB, Hud NV. Polym. Chem. 2018; 9: 5268
  • 70 Karunakaran SC, Cafferty BJ, Jain KS, Schuster GB, Hud NV. ACS Omega 2019; 5: 344
  • 71 Weyandt E, ter Huurne GM, Vantomme G, Markvoort AJ, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2020; 142: 6295
  • 72 Ahrens MJ, Kelley RF, Dance ZE. X, Wasielewski MR. Phys. Chem. Chem. Phys. 2007; 9: 1469
  • 73 Helmich F, Lee CC, Nieuwenhuizen MM. L, Gielen JC, Christianen PC. M, Larsen A, Fytas G, Leclère PE. L. G, Schenning AP. H. J, Meijer EW. Angew. Chem. Int. Ed. 2010; 49: 3939
  • 74 Hirose T, Helmich F, Meijer EW. Angew. Chem. Int. Ed. 2013; 52: 304
  • 75 Vantomme G, Ter Huurne GM, Kulkarni C, ten Eikelder HM. M, Markvoort AJ, Palmans AR. A, Meijer EW. J. Am. Chem. Soc. 2019; 141: 18278
  • 76 Kumar J, Tsumatori H, Yuasa J, Kawai T, Nakashima T. Angew. Chem. Int. Ed. 2015; 54: 5943
  • 77 Martin RB. Chem. Rev. 1996; 96: 3043
  • 78 Goldstein RF, Stryer L. Biophys. J. 1986; 50: 583
  • 79 Ten Eikelder HM. M, Markvoort AJ. Acc. Chem. Res. 2019; 52: 3465
  • 80 Smulders MM. J, Nieuwenhuizen MM. L, de Greef TF. A, van der Schoot P, Schenning AP. H. J, Meijer EW. Chem. Eur. J. 2010; 16: 362
  • 81 Fernández G, Stolte M, Stepanenko V, Würthner F. Chem. Eur. J. 2013; 19: 206
  • 82 Kulkarni C, Meijer EW, Palmans AR. A. Acc. Chem. Res. 2017; 50: 1928
  • 83 Vill R, Gülcher J, Khalatur P, Wintergerst P, Stoll A, Mourran A, Ziener U. Nanoscale 2019; 11: 663
  • 84 Mears LL. E, Draper ER, Castilla AM, Su H, , Zhuola, Dietrich B, Nolan MC, Smith GN, Doutch J, Rogers S, Akhtar R, Cui H, Adams DJ. Biomacromolecules 2017; 18: 3531
  • 85 Sanguramath RA, Nealey PF, Shenhar R. Chem. Eur. J. 2016; 22: 10203
  • 86 Steinlein C, Kreger K, Schmidt H. Macromol. Mater. Eng. 2019; 304: 1900258
  • 87 Ribó JM, Crusats J, Sagués F, Claret J, Rubires R. Science 2001; 292: 2063
  • 88 Lutz J-FJF, Ouchi M, Liu DR, Sawamoto M. Science 2013; 341: 1238149