CC BY-NC-ND 4.0 · Organic Materials 2020; 02(03): 223-228
DOI: 10.1055/s-0040-1714145
Short Communication

A Water-Dispersible Quinoid-Resonant Conducting Polymer for Organic Electronics

a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
b   School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
,
a   Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
b   School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
› Author Affiliations
Funding Information We thank the National Key Research and Development Program of China (No. 2019YFA0705900 and 2017YFA0204701) funded by MOST and the National Natural Science Foundation of China (No. 21661132006, 21572234, and 91833304) for the financial support.


Abstract

Developing stable and solution-processable highly conductive polymers has been the research goal in organic electronics since the first demonstration of metallic conductive polyacetylene. Here, we used a unique quinoid-resonant building block thieno[3,4-b]thiophene (TbT) to develop a new water-dispersible conducting polymer, PTbT-Me:PSS. Linear polymerization and large surfactant counterion, poly(styrenesulfonate) (PSS), were introduced, which enabled a high electrical conductivity of 68 S cm−1 and exhibited water-dispersible property. Interchain bipolaron was found in PTbT-Me:PSS when compared with polaron in PEDOT:PSS in their conducting mechanism. Moreover, we applied this highly conductive PTbT-Me:PSS as the solution-processed polymer thermoelectric material and a decent power factor of 3.1 μW m−1 K−2 was achieved.

Supporting Information

Supporting information for this article is available online at http://doi.org/10.1055/s-0040-1714145.


Supporting Information



Publication History

Received: 11 May 2020

Accepted: 04 June 2020

Article published online:
20 August 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Heeger AJ. Angew. Chem. Int. Ed. 2001; 40: 2591
    • 2
    • 2a Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. J. Chem. Soc., Chem. Commun. 1977; 578
    • 2b Naarmann H, Theophilou N. Synth. Met. 1987; 22: 1
    • 2c Park YW. Synth. Met. 1991; 45: 173
      3
    • 3a Cao Y, Treacy GM, Smith P, Heeger AJ. Synth. Met. 1993; 57: 3526
    • 3b Toshima N. Macromol. Symp. 2002; 186: 81
    • 3c Li J, Tang X, Li H, Yan Y, Zhang Q. Synth. Met. 2010; 160: 1153
  • 4 Yan H, Ohta T, Toshima N. Macromol. Mater. Eng. 2001; 286: 139
  • 5 Kirchmeyer S, Reuter K. J. Mater. Chem. 2005; 15: 2077
  • 6 Chen R, Sun K, Zhang Q, Zhou Y, Li M, Sun Y, Wu Z, Wu Y, Li X, Xi J, Ma C, Zhang Y, Ouyang J. iScience 2019; 12: 66
    • 7
    • 7a Yano H, Kudo K, Marumo K, Okuzaki H. Sci. Adv. 2019; 5: v9492
    • 7b Zotti G, Zecchin S, Schiavon G, Groenendaal LB. Macromol. Chem. Phys. 2002; 203: 1958
    • 7c Persson KM, Karlsson R, Svennersten K, Loffler S, Jager EW, Richter-Dahlfors A, Konradsson P, Berggren M. Adv. Mater. 2011; 23: 4403
      8
    • 8a Kawase T, Sirringhaus H, Friend RH, Shimoda T. Adv. Mater. 2001; 13: 1601
    • 8b Okuzaki H, Ishihara M, Ashizawa S. Synth. Met. 2003; 137: 947
  • 9 Gustafsson JC, Liedberg B, Inganäs O. Solid State Ionics 1994; 69: 145
  • 10 Zhang F, Johansson M, Andersson MR, Hummelen JC, Inganäs O. Adv. Mater. 2002; 14: 662
  • 11 Burroughes JH, Bradley DD. C, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Nature 1990; 347: 539
  • 12 Jonas F, Morrison JT. Synth. Met. 1997; 85: 1397
    • 13
    • 13a Kim B, Shin H, Park T, Lim H, Kim E. Adv. Mater. 2013; 25: 5483
    • 13b Kim GH, Shao L, Zhang K, Pipe KP. Nat. Mater. 2013; 12: 719
    • 13c Bubnova O, Khan ZU, Wang H, Braun S, Evans DR, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin JB, Geerts YH, Desbief S, Breiby DW, Andreasen JW, Lazzaroni R, Chen WM, Zozoulenko I, Fahlman M, Murphy PJ, Berggren M, Crispin X. Nat. Mater. 2014; 13: 190
    • 13d Shi W, Zhao T, Xi J, Wang D, Shuai Z. J. Am. Chem. Soc. 2015; 137: 12929
    • 13e Weathers A, Khan ZU, Brooke R, Evans D, Pettes MT, Andreasen JW, Crispin X, Shi L. Adv. Mater. 2015; 27: 2101
      14
    • 14a Neef CJ, Brotherston ID, Ferraris JP. Chem. Mater. 1999; 11: 1957
    • 14b Pomerantz M, Gu X, Zhang SX. Macromolecules 2001; 34: 1817
    • 14c Sotzing GA, Lee K. Macromolecules 2002; 35: 7281
    • 14d Lee B, Seshadri V, Sotzing GA. Langmuir 2005; 21: 10797
    • 14e Patra A, Wijsboom YH, Leitus G, Bendikov M. Chem. Mater. 2011; 23: 896
    • 14f Yuan D, Liu L, Jiao X, Zou Y, McNeill CR, Xu W, Zhu X, Zhu D. Adv. Sci. 2018; 5: 1800947
    • 14g Zhang C, Zang Y, Gann E, McNeill CR, Zhu X, Di CA, Zhu D. J. Am. Chem. Soc. 2014; 136: 16176
    • 14h Ren L, Liu F, Shen X, Zhang C, Yi Y, Zhu X. J. Am. Chem. Soc. 2015; 137: 11294
    • 14i Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X. J. Am. Chem. Soc. 2016; 138: 15523
      15
    • 15a Liu F, Espejo GL, Qiu S, Oliva MM, Pina J, Seixas de Melo JS, Casado J, Zhu X. J. Am. Chem. Soc. 2015; 137: 10357
    • 15b Mishra A, Ma CQ, Bäuerle P. Chem. Rev. 2009; 109: 1141
    • 15c Zhang C, Zhu X. Acc. Chem. Res. 2017; 50: 1342
    • 15d Yuan D. Chem 2019; 5: 744
    • 15e Yuan D, Huang D, Rivero SM, Carreras A, Zhang C, Zou Y, Jiao X, McNeill CR, Zhu X, Di CA, Zhu D, Casanova D, Casado J. Chem 2019; 5: 964
    • 15f Ren L, Fan H, Huang D, Yuan D, Di CA, Zhu X. Chem. Eur. J. 2016; 22: 17136
    • 15g Ren L, Yuan D, Gann E, Guo Y, Thomsen L, McNeill CR, Di CA, Yi Y, Zhu X, Zhu D. Chem. Mater. 2017; 29: 4999
    • 15h Yuan D, Huang D, Zhang C, Zou Y, Di CA, Zhu X, Zhu D. ACS Appl. Mater. Interfaces 2017; 9: 28795
    • 15i Ren L, Yuan D, Zhu X. Chem. Asian J. 2019; 14: 1717
    • 15j Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, Zhu X. Angew. Chem. Int. Ed. 2019; 58: 4958
  • 16 Swager TM. Macromolecules 2017; 50: 4867
  • 17 Synthesis of PT b T-Me:PSS: TbT-Me monomer, Fe2(SO4)3, and PSSH were added to a round-bottomed flask in deionized water (15 mg of TbT-Me in 1 mL of H2O) under ambient conditions. The mixture was vigorously stirred at room temperature in air for 2 days. The insoluble precipitate was leached by a filter membrane and a black solution was obtained as shown in Figure S1. The optimization details are shown in Figure S2
  • 18 Aust RB, Bentley WH, Drickamer HG. J. Chem. Phys. 1964; 41: 1856
  • 19 Park T, Park C, Kim B, Shin H, Kim E. Energy Environ. Sci. 2013; 6: 788
  • 20 Fan Z, Li P, Du D, Ouyang J. Adv. Energy Mater. 2017; 7: 1602116
  • 21 Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. Adv. Funct. Mater. 2011; 21: 1076
  • 22 Bubnova O, Crispin X. Energy Environ. Sci. 2012; 5: 9345
  • 23 Schwarze M, Gaul C, Scholz R, Bussolotti F, Hofacker A, Schellhammer KS, Nell B, Naab BD, Bao Z, Spoltore D, Vandewal K, Widmer J, Kera S, Ueno N, Ortmann F, Leo K. Nat. Mater. 2019; 18: 242
  • 24 Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat. Mater. 2011; 10: 429
    • 25
    • 25a Poehler TO, Katz HE. Energy Environ. Sci. 2012; 5: 8110
    • 25b Zhang Q, Sun Y, Xu W, Zhu D. Adv. Mater. 2014; 26: 6829
    • 25c Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Nat. Rev. Mater. 2016; 1: 16050
    • 25d Sun Y, Di CA, Xu W, Zhu D. Adv. Electron. Mater. 2019; 5: 1800825
    • 25e Zhang J, Song G, Qiu L, Feng Y, Chen J, Yan J, Liu L, Huang X, Cui Y, Sun Y, Xu W, Zhu D. Macromol. Rapid Commun. 2018; 39: 1800283
    • 25f Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X, Giovannitti A, Stegerer D, Cano A, Hynynen J, Yu L, Zhang Y, Nai D, Harrelson TF, Sommer M, Moule AJ, Kemerink M, Marder SR, McCulloch I, Fahlman M, Fabiano S, Müller C. Nat. Mater. 2019; 18: 149
    • 25g Wu J, Sun Y, Pei WB, Huang L, Xu W, Zhang Q. Synth. Met. 2014; 196: 173
    • 25h Yao CJ, Zhang HL, Zhang Q. Polymers 2019; 11: 107
    • 25i Zeng YJ, Wu D, Cao XH, Zhou WX, Tang LM, Chen KQ. Adv. Funct. Mater. 2020; 30: 1903873
    • 25j Lu Y, Wang J-Y, Pei J. Chem. Mater. 2019; 31: 6412
    • 25k Kroon R, Mengistie DA, Kiefer D, Hynynen J, Ryan JD, Yu L, Müller C. Chem. Soc. Rev. 2016; 45: 6147
    • 25l McGrail BT, Sehirlioglu A, Pentzer E. Angew. Chem. Int. Ed. 2015; 54: 1710