J Wrist Surg 2021; 10(06): 476-483
DOI: 10.1055/s-0040-1716863
Special Review: The Scapholunate Dilemma

Ligamentization and Remnant Integration: Review and Analysis of Current Evidence and Implications for Scapholunate Reconstruction

Tim A.J. Lindsay
1   College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Harley R. Myers
2   Department of Plastic, Hand and Faciomaxillary Surgery, The Alfred, Melbourne, Victoria, Australia
,
Stephen Tham
3   Victorian Hand Surgery Associates, Fitzroy, Victoria, Australia
4   St. Vincent's Hand Surgery Unit, St. Vincent's Hospital, Fitzroy, Victoria, Australia
5   Hand and Wrist Biomechanics Laboratory, O'Brien Institute, St Vincents Hospital, Fitzroy, Victoria, Australia
6   Hand Unit, Dandenong Hospital, Dandenong, Victoria, Australia
› Institutsangaben

Abstract

Background Scapholunate interosseous ligament injuries are common but remain a therapeutic challenge. Current treatment modalities prioritize restoration of normal anatomy with reconstruction where appropriate. To date no reconstructive technique has been described that discusses the potential benefit of preservation of the scapholunate ligament remnant. Little is known about the “ligamentization” of grafts within the wrist. However, a growing body of knee literature suggests that remnant sparing may confer some benefit. In the absence of wrist specific studies, this literature must guide areas for potential augmentation of current surgical practices.

Objective The purpose of this study was to perform a review of the process of ligamentization and a systematic review of the current literature on the possible role of ligament sparring and its effect on ligamentization.

Methods A systematic search of the literature was performed to identify all the studies related to remnant sparing and the ligamentization of reconstructed tendons, regardless of graft type or joint involved from MEDLINE, EMBASE, and PubMed until February 1, 2016 using the following keywords: ligamentization, graft, remodelling, reconstruction, biomechan*, histolo∗, scapholunate ligament. Each selected study was evaluated for methodological quality and risk of bias according to a modified Systematic Review Center for Laboratory Animal Experimentation criteria.

Conclusions The available literature suggests that ligament sparring demonstrated a trend toward improvements in vascularity, mechanoreceptors, and biomechanics that lessens in significance over time.

Clinical Relevance This review suggests that remnant sparing may be one way to improve outcomes of scapholunate ligament reconstructive surgery.

Level of Evidence This is a level I/II, review study.

Supplementary Material



Publikationsverlauf

Eingereicht: 04. August 2020

Angenommen: 11. August 2020

Artikel online veröffentlicht:
23. Oktober 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Jørgsholm P, Thomsen NOB, Björkman A, Besjakov J, Abrahamsson SO. The incidence of intrinsic and extrinsic ligament injuries in scaphoid waist fractures. J Hand Surg Am 2010; 35 (03) 368-374
  • 2 Crawford K, Owusu-Sarpong N, Day C, Iorio M. Scapholunate ligament reconstruction: a critical analysis review. JBJS Rev 2016; 4 (04) e41-e48
  • 3 Pappou IP, Basel J, Deal DN. Scapholunate ligament injuries: a review of current concepts. Hand (N Y) 2013; 8 (02) 146-156
  • 4 Rajan PV, Day CS. Scapholunate interosseous ligament anatomy and biomechanics. J Hand Surg Am 2015; 40 (08) 1692-1702
  • 5 Johnson JE, Lee P, McIff TE, Toby EB, Fischer KJ. Scapholunate ligament injury adversely alters in vivo wrist joint mechanics: an MRI-based modeling study. J Orthop Res 2013; 31 (09) 1455-1460
  • 6 Short WH, Werner FW, Green JK, Masaoka S. Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate. J Hand Surg Am 2002; 27 (06) 991-1002
  • 7 Salva-Coll G, Garcia-Elias M, Hagert E. Scapholunate instability: proprioception and neuromuscular control. J Wrist Surg 2013; 2 (02) 136-140
  • 8 Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M. Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 2002; 73 (03) 330-334
  • 9 Hagert E, Forsgren S, Ljung BO. Differences in the presence of mechanoreceptors and nerve structures between wrist ligaments may imply differential roles in wrist stabilization. J Orthop Res 2005; 23 (04) 757-763
  • 10 Mataliotakis G, Doukas M, Kostas I, Lykissas M, Batistatou A, Beris A. Sensory innervation of the subregions of the scapholunate interosseous ligament in relation to their structural composition. J Hand Surg Am 2009; 34 (08) 1413-1421
  • 11 Carratalá V, Lucas FJ, Miranda I, Sánchez Alepuz E, González Jofré C. Arthroscopic scapholunate capsuloligamentous repair: suture with dorsal capsular reinforcement for scapholunate ligament lesion. Arthrosc Tech 2017; 6 (01) e113-e120
  • 12 De Carli P, Donndorff AG, Torres MT, Boretto JG, Gallucci GL. Combined tenodesis-capsulodesis for scapholunate instability: minimum 2-year follow-up. J Wrist Surg 2017; 6 (01) 11-21
  • 13 Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA. Anterior cruciate ligament reconstruction best practice: a review of graft choice. World J Orthop 2014; 5 (01) 23-29
  • 14 Hofstede DJ, Ritt MJPF, Bos KE. Tarsal autografts for reconstruction of the scapholunate interosseous ligament: a biomechanical study. J Hand Surg Am 1999; 24 (05) 968-976
  • 15 Shin SS, Moore DC, McGovern RD, Weiss A-PC. Scapholunate ligament reconstruction using a bone-retinaculum-bone autograft: a biomechanic and histologic study. J Hand Surg Am 1998; 23 (02) 216-221
  • 16 Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1984; 1 (03) 257-265
  • 17 Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 1986; 4 (02) 162-172
  • 18 Fujii K, Yamagishi T, Nagafuchi T, Tsuji M, Kuboki Y. Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc 1994; 2 (04) 229-233
  • 19 Rumian AP, Wallace AL, Birch HL. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features--a comparative study in an ovine model. J Orthop Res 2007; 25 (04) 458-464
  • 20 Lane JG, McFadden P, Bowden K, Amiel D. The ligamentization process: a 4 year case study following ACL reconstruction with a semitendinosis graft. Arthroscopy 1993; 9 (02) 149-153
  • 21 Mayr HO, Stoehr A, Dietrich M. et al. Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surg Sports Traumatol Arthrosc 2012; 20 (05) 947-956
  • 22 Xie GM, Huang Fu XQ, Zhao JZ. The effect of remnant preservation on patterns of gene expression in a rabbit model of anterior cruciate ligament reconstruction. J Surg Res 2012; 176 (02) 510-516
  • 23 Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2008; 16 (09) 834-842
  • 24 Claes S, Verdonk P, Forsyth R, Bellemans J. The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 2011; 39 (11) 2476-2483
  • 25 Janssen RPA, Scheffler SU. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 2102-2108
  • 26 Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 1993; 9 (04) 394-405
  • 27 Zaffagnini S, De Pasquale V, Marchesini Reggiani L. et al. Electron microscopy of the remodelling process in hamstring tendon used as ACL graft. Knee Surg Sports Traumatol Arthrosc 2010; 18 (08) 1052-1058
  • 28 Stone KR, Walgenbach AW, Turek TJ, Somers DL, Wicomb W, Galili U. Anterior cruciate ligament reconstruction with a porcine xenograft: a serologic, histologic, and biomechanical study in primates. Arthroscopy 2007; 23 (04) 411-419
  • 29 Clancy Jr WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 1981; 63 (08) 1270-1284
  • 30 Butler DL, Grood ES, Noyes FR. et al. Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time. J Orthop Res 1989; 7 (01) 68-79
  • 31 Short WH, Werner FW, Green JK, Sutton LG, Brutus JP. Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate: part III. J Hand Surg Am 2007; 32 (03) 297-309
  • 32 Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 2006; 14 (10) 982-992
  • 33 Shin RH, Zhao C, Zobitz ME, Amadio PC, An K-N. Mechanical properties of intrasynovial and extrasynovial tendon fascicles. Clin Biomech (Bristol, Avon) 2008; 23 (02) 236-241
  • 34 Grutter PW, Petersen SA. Anatomical acromioclavicular ligament reconstruction: a biomechanical comparison of reconstructive techniques of the acromioclavicular joint. Am J Sports Med 2005; 33 (11) 1723-1728
  • 35 Hu J, Qu J, Xu D, Zhang T, Zhou J, Lu H. Clinical outcomes of remnant preserving augmentation in anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 1976-1985
  • 36 Song GY, Zhang J, Li X, Li Y, Feng H. Biomechanical and biological findings between acute anterior cruciate ligament reconstruction with and without an augmented remnant repair: a comparative in vivo animal study. Arthroscopy 2016; 32 (02) 307-319
  • 37 Sun L, Wu B, Tian M, Liu B, Luo Y. Comparison of graft healing in anterior cruciate ligament reconstruction with and without a preserved remnant in rabbits. Knee 2013; 20 (06) 537-544
  • 38 Takahashi T, Kondo E, Yasuda K. et al. Effects of remnant tissue preservation on the tendon graft in anterior cruciate ligament reconstruction: a biomechanical and histological study. Am J Sports Med 2016; 44 (07) 1708-1716
  • 39 Wu B, Zhao Z, Li S, Sun L. Preservation of remnant attachment improves graft healing in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 2013; 29 (08) 1362-1371
  • 40 Zhang L, Jiang K, Chai H, Zhou M, Bai J. A comparative animal study of tendon grafts healing after remnant-preserving versus conventional anterior cruciate ligament reconstruction. Med Sci Monit 2016; 22: 3426-3437
  • 41 Mifune Y, Ota S, Takayama K. et al. Therapeutic advantage in selective ligament augmentation for partial tears of the anterior cruciate ligament: results in an animal model. Am J Sports Med 2013; 41 (02) 365-373
  • 42 Ahn JH, Lee SH, Choi SH, Lim TK. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med 2010; 38 (09) 1768-1777
  • 43 Dhillon MS, Bali K, Vasistha RK. Immunohistological evaluation of proprioceptive potential of the residual stump of injured anterior cruciate ligaments (ACL). Int Orthop 2010; 34 (05) 737-741
  • 44 Gao F, Zhou J, He C. et al. A morphologic and quantitative study of mechanoreceptors in the remnant stump of the human anterior cruciate ligament. Arthroscopy 2016; 32 (02) 273-280
  • 45 Kim SH, Chun CH, Chun KC, Jo HJ, Kim KM. Histological assessment of mechanoreceptors in Achilles allografts after anterior cruciate ligament reconstruction. Am J Sports Med 2012; 40 (09) 2061-2065
  • 46 Chun KC, Lee SH, Kim JW, Jin EJ, Kim KM, Chun CH. Immunohistochemical and immunocytochemical study of mechanoreceptors in anterior cruciate ligament reconstruction with the remnant-preserving technique using Achilles tendon allografts. J Orthop Surg Res 2017; 12 (01) 93
  • 47 Athlani L, Pauchard N, Dautel G. Radiological evaluation of scapholunate intercarpal ligamentoplasty for chronic scapholunate dissociation in cadavers. J Hand Surg Eur Vol 2018; 43 (04) 387-393
  • 48 Henry M. Reconstruction of both volar and dorsal limbs of the scapholunate interosseous ligament. J Hand Surg Am 2013; 38 (08) 1625-1634
  • 49 Eng K, Wagels M, Tham SK. Cadaveric scapholunate reconstruction using the ligament augmentation and reconstruction system. J Wrist Surg 2014; 3 (03) 192-197
  • 50 Ho PC, Wong CWY, Tse WL. Arthroscopic-assisted combined dorsal and volar scapholunate ligament reconstruction with tendon graft for chronic sl instability. J Wrist Surg 2015; 4 (04) 252-263
  • 51 Alonso-Rasgado T, Zhang Q-H, Jimenez-Cruz D. et al. Evaluation of the performance of three tenodesis techniques for the treatment of scapholunate instability: flexion-extension and radial-ulnar deviation. Med Biol Eng Comput 2018; 56 (06) 1091-1105
  • 52 Corella F, Del Cerro M, Ocampos M, Larrainzar-Garijo R. Arthroscopic ligamentoplasty of the dorsal and volar portions of the scapholunate ligament. J Hand Surg Am 2013; 38 (12) 2466-2477
  • 53 Dunn MJ, Johnson C. Static scapholunate dissociation: a new reconstruction technique using a volar and dorsal approach in a cadaver model. J Hand Surg Am 2001; 26 (04) 749-754
  • 54 Hyrkas J, Antti-Poika I, Virkki LM, Ogino D, Konttinen YT. New operative technique for treatment of arthroscopically-confirmed injury to the scapholunate ligament by volar capsuloplasty augmented with a free tendon graft. Scand J Plast Reconstr Surg Hand Surg 2008; 42 (05) 260-266
  • 55 Marcuzzi A, Leti Acciaro A, Caserta G, Landi A. Ligamentous reconstruction of scapholunate dislocation through a double dorsal and palmar approach. J Hand Surg [Br] 2006; 31 (04) 445-449
  • 56 Berger RA, Imeada T, Berglund L, An KN. Constraint and material properties of the subregions of the scapholunate interosseous ligament. J Hand Surg Am 1999; 24 (05) 953-962
  • 57 Logan SE, Nowak MD, Gould PL, Weeks PM. Biomechanical behavior of the scapholunate ligament. Biomed Sci Instrum 1986; 22: 81-85
  • 58 Cuénod P, Charrière E, Papaloïzos MY. A mechanical comparison of bone-ligament-bone autografts from the wrist for replacement of the scapholunate ligament. J Hand Surg Am 2002; 27 (06) 985-990
  • 59 Nikolopoulos FV, Apergis EP, Poulilios AD, Papagelopoulos PJ, Zoubos AV, Kefalas VA. Biomechanical properties of the scapholunate ligament and the importance of its portions in the capitate intrusion injury. Clin Biomech (Bristol, Avon) 2011; 26 (08) 819-823